Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Není k dispozici

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F04%3A03099341" target="_blank" >RIV/68407700:21230/04:03099341 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    BTF Image Space Utmost Compression and Modelling Method

  • Popis výsledku v původním jazyce

    The bidirectional texture function (BTF) describes texture appearance variations due to varying illumination and viewing conditions. This function is acquired by large number of measurements for all possible combinations of illumination and viewing positions hence some compressed representation of these huge BTF texture data spaces is obviously inevitable. In this paper we present a novel efficient probabilistic model-based method for multispectral BTF texture compression which simultaneously allows itsefficient modelling.This representation model is capable of seamless BTF space enlargement and direct implementation inside the graphical card processing unit.The analytical step of the algorithm starts with BTF texture surface estimation followed by the spatial factorization of an input multispectral texture image. Single band-limited factors are independently modelled by their dedicated 3D causal autoregressive models (CAR). We estimate an optimal contextual neighbourhood and p.

  • Název v anglickém jazyce

    BTF Image Space Utmost Compression and Modelling Method

  • Popis výsledku anglicky

    The bidirectional texture function (BTF) describes texture appearance variations due to varying illumination and viewing conditions. This function is acquired by large number of measurements for all possible combinations of illumination and viewing positions hence some compressed representation of these huge BTF texture data spaces is obviously inevitable. In this paper we present a novel efficient probabilistic model-based method for multispectral BTF texture compression which simultaneously allows itsefficient modelling.This representation model is capable of seamless BTF space enlargement and direct implementation inside the graphical card processing unit.The analytical step of the algorithm starts with BTF texture surface estimation followed by the spatial factorization of an input multispectral texture image. Single band-limited factors are independently modelled by their dedicated 3D causal autoregressive models (CAR). We estimate an optimal contextual neighbourhood and p.

Klasifikace

  • Druh

    A - Audiovizuální tvorba

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2004

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • ISBN

    0-7695-2128-2

  • Místo vydání

    London

  • Název nakladatele resp. objednatele

  • Verze

  • Identifikační číslo nosiče

    neuvedeno