Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Není k dispozici

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F04%3A03103408" target="_blank" >RIV/68407700:21230/04:03103408 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    AdaBoost with Totally Corrective Updates for Fast Face Detection

  • Popis výsledku v původním jazyce

    An extension of the AdaBoost learning algorithm is proposed and brought to bear on the face detection problem. In each weak classifier selection cycle, the novel totally corrective algorithm reduces aggressively the upper bound on the training error by correcting coefficients of all weak classifiers. The correction steps are proven to lower the upper bound on the error without increasing computational complexity of the resulting detector. We show experimentally that for the face detection problem, wherelarge training sets are available, the technique does not overfit. A cascaded face detector of the Viola-Jones type is built using AdaBoost with the Totally Corrective Update. The same detection and false positive rates are achieved with a detector thatis 20 perc. faster and consists of only a quarter of the weak classifiers needed for a classifier trained by standard AdaBoost. The latter property facilitates hardware implementation, the former opens scope for the increase in the searc

  • Název v anglickém jazyce

    AdaBoost with Totally Corrective Updates for Fast Face Detection

  • Popis výsledku anglicky

    An extension of the AdaBoost learning algorithm is proposed and brought to bear on the face detection problem. In each weak classifier selection cycle, the novel totally corrective algorithm reduces aggressively the upper bound on the training error by correcting coefficients of all weak classifiers. The correction steps are proven to lower the upper bound on the error without increasing computational complexity of the resulting detector. We show experimentally that for the face detection problem, wherelarge training sets are available, the technique does not overfit. A cascaded face detector of the Viola-Jones type is built using AdaBoost with the Totally Corrective Update. The same detection and false positive rates are achieved with a detector thatis 20 perc. faster and consists of only a quarter of the weak classifiers needed for a classifier trained by standard AdaBoost. The latter property facilitates hardware implementation, the former opens scope for the increase in the searc

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2004

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    FGR '04: Proceeding of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition

  • ISBN

    0-7695-2122-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    445-450

  • Název nakladatele

    IEEE Computer Society Press

  • Místo vydání

    Los Alamitos

  • Místo konání akce

    Seoul

  • Datum konání akce

    17. 5. 2004

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku