Není k dispozici
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F04%3A03103447" target="_blank" >RIV/68407700:21230/04:03103447 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic generation of fuzzy rules and its applications in medical diagnosis
Popis výsledku v původním jazyce
Fuzzy Rule Learner (FURL) is a theory revision approach to fuzzy rules learning based on Hierarchical Prioritized Structures. Each new level is composed from exceptions to rules from the preceding levels. The new rules are chosen in order to eliminate the biggest classification errors found in the training data. FURL may me combined with many techniques used to interpret rule bases in fuzzy controllers. In the traditional approaches to fuzzy approximation, the learning of rules has an undesirable effect. When many new rules are added, the interpretation of the rule base tends to one of its extreme values, thus we loose its informational value. In this paper, we suggest and test two methods which may overcome this drawback, negated antecedents and a controller with conditionally firing rules. We show that they allow to improve the performance of systems based on learning of fuzzy rules, namely the Fuzzy Rule Learner. The methods are tested on ECG and Multiple Sclerosis Disease datasets.
Název v anglickém jazyce
Automatic generation of fuzzy rules and its applications in medical diagnosis
Popis výsledku anglicky
Fuzzy Rule Learner (FURL) is a theory revision approach to fuzzy rules learning based on Hierarchical Prioritized Structures. Each new level is composed from exceptions to rules from the preceding levels. The new rules are chosen in order to eliminate the biggest classification errors found in the training data. FURL may me combined with many techniques used to interpret rule bases in fuzzy controllers. In the traditional approaches to fuzzy approximation, the learning of rules has an undesirable effect. When many new rules are added, the interpretation of the rule base tends to one of its extreme values, thus we loose its informational value. In this paper, we suggest and test two methods which may overcome this drawback, negated antecedents and a controller with conditionally firing rules. We show that they allow to improve the performance of systems based on learning of fuzzy rules, namely the Fuzzy Rule Learner. The methods are tested on ECG and Multiple Sclerosis Disease datasets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F02%2F1540" target="_blank" >GA201/02/1540: Vícehodnotové logiky pro soft computing</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2004
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 10th International Conference on Information Processing and Management of Uncertainty
ISBN
88-87242-54-2
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
657-663
Název nakladatele
Universita La Sapienza
Místo vydání
Rome
Místo konání akce
Rome
Datum konání akce
4. 7. 2004
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—