Feature Selection Based on the Training Set Manipulation - PhD thesis proposal
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F05%3A00109895" target="_blank" >RIV/68407700:21230/05:00109895 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Feature Selection Based on the Training Set Manipulation - PhD thesis proposal
Popis výsledku v původním jazyce
A novel feature selection technique for the classification problems is proposed in this PhD thesis proposal. The method is based on the training set manipulation. A weight is associated with each training sample similarly as it is in the AdaBoost algorithm. The weights form a distribution. Any change of the distribution of weights influences the behaviour of particular features in a different manner. This brings new information to the selection process in contrast to other feature selection techniques.The main idea is to modify the weights in each selection step so that the currently selected feature appears, with respect to the distribution, like an irrelevant observation. We show in experiments that such a change of the weights distribution allows to reveal hidden relationships between features. Although the feature selection algorithm is not completely developed yet, preliminary results achieved on several artificial problem looks promising.
Název v anglickém jazyce
Feature Selection Based on the Training Set Manipulation - PhD thesis proposal
Popis výsledku anglicky
A novel feature selection technique for the classification problems is proposed in this PhD thesis proposal. The method is based on the training set manipulation. A weight is associated with each training sample similarly as it is in the AdaBoost algorithm. The weights form a distribution. Any change of the distribution of weights influences the behaviour of particular features in a different manner. This brings new information to the selection process in contrast to other feature selection techniques.The main idea is to modify the weights in each selection step so that the currently selected feature appears, with respect to the distribution, like an irrelevant observation. We show in experiments that such a change of the weights distribution allows to reveal hidden relationships between features. Although the feature selection algorithm is not completely developed yet, preliminary results achieved on several artificial problem looks promising.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA102%2F03%2F0440" target="_blank" >GA102/03/0440: Rozpoznávání lidských aktivit pro automatické sledování z videa</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2005
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů