Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Není k dispozici

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F06%3A03124632" target="_blank" >RIV/68407700:21230/06:03124632 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Feature selection based on the training set manipulation

  • Popis výsledku v původním jazyce

    A novel filter feature selection technique is introduced. The method exploits the information conveyed by the evolution of the training samples weights similarly to the Adaboost algorithm. Features are selected on the basis of their individual merit using a simple error function. The weights dynamics and its effect on the error function are utilised to identify and remove redundant and irrelevant features. In experiments we show that the performance of commonly employed learning algorithms using features selected by the proposed method is the same or better than that obtained with features selected by the traditional state-of-theart techniques.

  • Název v anglickém jazyce

    Feature selection based on the training set manipulation

  • Popis výsledku anglicky

    A novel filter feature selection technique is introduced. The method exploits the information conveyed by the evolution of the training samples weights similarly to the Adaboost algorithm. Features are selected on the basis of their individual merit using a simple error function. The weights dynamics and its effect on the error function are utilised to identify and remove redundant and irrelevant features. In experiments we show that the performance of commonly employed learning algorithms using features selected by the proposed method is the same or better than that obtained with features selected by the traditional state-of-theart techniques.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA102%2F03%2F0440" target="_blank" >GA102/03/0440: Rozpoznávání lidských aktivit pro automatické sledování z videa</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2006

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ICPR 2006: Proceedings of the 18th International Conference on Pattern Recognition

  • ISBN

    0-7695-2521-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    658-661

  • Název nakladatele

    IEEE Computer Society Press

  • Místo vydání

    Los Alamitos

  • Místo konání akce

    Hongkong

  • Datum konání akce

    20. 8. 2006

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku