Discriminable and Stable Feature Selection for Computer-aided Diagnosis from Sonographic Images - PhD Thesis Proposal
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F05%3A00109899" target="_blank" >RIV/68407700:21230/05:00109899 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Discriminable and Stable Feature Selection for Computer-aided Diagnosis from Sonographic Images - PhD Thesis Proposal
Popis výsledku v původním jazyce
This paper summarises state-of-the-art in feature selection and classification for medical purposes. The main focus is put on sonographic imaging, especially images of the thyroid gland. State-of-the-art covers related works dealing with feature selection and classification (i) in general, (ii) for medical purposes, and (iii) for thyroid gland diseases. It also summarizes works that deal with the task of different scanners and digitizer setting, which may lead to different classification results. The second part of this paper describes our methods and experiences with feature selection and classification applied on sonographic images of thyroid gland. It deals with generating features from sonographic textural images and reproducibility under differentsonograph settings. The last part involves tentative plan for future work to conclude PhD thesis.
Název v anglickém jazyce
Discriminable and Stable Feature Selection for Computer-aided Diagnosis from Sonographic Images - PhD Thesis Proposal
Popis výsledku anglicky
This paper summarises state-of-the-art in feature selection and classification for medical purposes. The main focus is put on sonographic imaging, especially images of the thyroid gland. State-of-the-art covers related works dealing with feature selection and classification (i) in general, (ii) for medical purposes, and (iii) for thyroid gland diseases. It also summarizes works that deal with the task of different scanners and digitizer setting, which may lead to different classification results. The second part of this paper describes our methods and experiences with feature selection and classification applied on sonographic images of thyroid gland. It deals with generating features from sonographic textural images and reproducibility under differentsonograph settings. The last part involves tentative plan for future work to conclude PhD thesis.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2005
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů