Není k dispozici
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F05%3A03107899" target="_blank" >RIV/68407700:21230/05:03107899 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Inducing Diverse Decision Forests with Genetic Programming
Popis výsledku v původním jazyce
This paper presents an algorithm for induction of ensembles of decision trees, also referred to as decision forests. In order to achieve high expressiveness the trees induced are multivariate, with various, possibly user-defined tests in their internal nodes. Strongly typed genetic programming is utilized to evolve structure of the tests. Special attention is given to the problem of diversity of the forest constructed. An approach is proposed, which explicitly encourages the induction algorithm to produce a different tree each run, which represents an alternative description of the data. It is shown that forests constructed this way have significantly reduced classification error even for small forest size, compared to other ensemble methods. Classification accuracy is also compared to other recent methods on several real-world datasets.
Název v anglickém jazyce
Inducing Diverse Decision Forests with Genetic Programming
Popis výsledku anglicky
This paper presents an algorithm for induction of ensembles of decision trees, also referred to as decision forests. In order to achieve high expressiveness the trees induced are multivariate, with various, possibly user-defined tests in their internal nodes. Strongly typed genetic programming is utilized to evolve structure of the tests. Special attention is given to the problem of diversity of the forest constructed. An approach is proposed, which explicitly encourages the induction algorithm to produce a different tree each run, which represents an alternative description of the data. It is shown that forests constructed this way have significantly reduced classification error even for small forest size, compared to other ensemble methods. Classification accuracy is also compared to other recent methods on several real-world datasets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1ET201210527" target="_blank" >1ET201210527: Znalostní podpora diagnostiky a predikce v kardiologii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2005
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Genetic Programming
ISBN
3-540-25436-6
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
301-310
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Lausanne
Datum konání akce
30. 3. 2005
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—