Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Experimentální studie vážení listů pro metodu Random Forests

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F04%3A00105191" target="_blank" >RIV/67985807:_____/04:00105191 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Experimental Study of Leaf Confidences for Random Forest

  • Popis výsledku v původním jazyce

    Decision forests (ensembles of trees) achieve usually smaller generalization error compared to single trees. In the classical methods for growing forests, bagging and boosting, the individual trees are constructed by methods originally developed for growing a single tree as the final predictor. In particular, the trees are usually pruned. For such trees, using weights (confidences) for individual trees improves the accuracy of the prediction of the ensemble. Random forests technique (Breiman 2001) usesa specific tree growing process, which does not produce good individual trees, but the whole ensemble frequently achieves better results than ensembles of trees obtained by classical bagging and boosting. One of the default features of Random Forests technique is that it does not use any weights. The current paper presents experiments demonstrating that in specific situations, appropriately chosen weights may improve the prediction for Random Forests of limited size.

  • Název v anglickém jazyce

    Experimental Study of Leaf Confidences for Random Forest

  • Popis výsledku anglicky

    Decision forests (ensembles of trees) achieve usually smaller generalization error compared to single trees. In the classical methods for growing forests, bagging and boosting, the individual trees are constructed by methods originally developed for growing a single tree as the final predictor. In particular, the trees are usually pruned. For such trees, using weights (confidences) for individual trees improves the accuracy of the prediction of the ensemble. Random forests technique (Breiman 2001) usesa specific tree growing process, which does not produce good individual trees, but the whole ensemble frequently achieves better results than ensembles of trees obtained by classical bagging and boosting. One of the default features of Random Forests technique is that it does not use any weights. The current paper presents experiments demonstrating that in specific situations, appropriately chosen weights may improve the prediction for Random Forests of limited size.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LN00A056" target="_blank" >LN00A056: Institut teoretické informatiky - Centrum mladé vědy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2004

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Computational Statistics

  • ISBN

    3-7908-1554-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    1767-1774

  • Název nakladatele

    Physica Verlag

  • Místo vydání

    Heidelberg

  • Místo konání akce

    Prague

  • Datum konání akce

    23. 8. 2004

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku