Oblique and rotation double random forest
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10251928" target="_blank" >RIV/61989100:27240/22:10251928 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0893608022002258?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0893608022002258?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neunet.2022.06.012" target="_blank" >10.1016/j.neunet.2022.06.012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Oblique and rotation double random forest
Popis výsledku v původním jazyce
Random Forest is an ensemble of decision trees based on the bagging and random subspace concepts. As suggested by Breiman, the strength of unstable learners and the diversity among them are the ensemble models' core strength. In this paper, we propose two approaches known as oblique and rotation double random forests. In the first approach, we propose rotation based double random forest. In rotation based double random forests, transformation or rotation of the feature space is generated at each node. At each node different random feature subspace is chosen for evaluation, hence the transformation at each node is different. Different transformations result in better diversity among the base learners and hence, better generalization performance. With the double random forest as base learner, the data at each node is transformed via two different transformations namely, principal component analysis and linear discriminant analysis. In the second approach, we propose oblique double random forest. Decision trees in random forest and double random forest are univariate, and this results in the generation of axis parallel split which fails to capture the geometric structure of the data. Also, the standard random forest may not grow sufficiently large decision trees resulting in suboptimal performance. To capture the geometric properties and to grow the decision trees of sufficient depth, we propose oblique double random forest. The oblique double random forest models are multivariate decision trees. At each non-leaf node, multisurface proximal support vector machine generates the optimal plane for better generalization performance. Also, different regularization techniques (Tikhonov regularization, axis-parallel split regularization, Null space regularization) are employed for tackling the small sample size problems in the decision trees of oblique double random forest. The proposed ensembles of decision trees produce trees with bigger size compared to the standard ensembles of decision trees as bagging is used at each non-leaf node which results in improved performance. The evaluation of the baseline models and the proposed oblique and rotation double random forest models is performed on benchmark 121 UCI datasets and real-world fisheries datasets. Both statistical analysis and the experimental results demonstrate the efficacy of the proposed oblique and rotation double random forest models compared to the baseline models on the benchmark datasets. (C) 2022 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
Oblique and rotation double random forest
Popis výsledku anglicky
Random Forest is an ensemble of decision trees based on the bagging and random subspace concepts. As suggested by Breiman, the strength of unstable learners and the diversity among them are the ensemble models' core strength. In this paper, we propose two approaches known as oblique and rotation double random forests. In the first approach, we propose rotation based double random forest. In rotation based double random forests, transformation or rotation of the feature space is generated at each node. At each node different random feature subspace is chosen for evaluation, hence the transformation at each node is different. Different transformations result in better diversity among the base learners and hence, better generalization performance. With the double random forest as base learner, the data at each node is transformed via two different transformations namely, principal component analysis and linear discriminant analysis. In the second approach, we propose oblique double random forest. Decision trees in random forest and double random forest are univariate, and this results in the generation of axis parallel split which fails to capture the geometric structure of the data. Also, the standard random forest may not grow sufficiently large decision trees resulting in suboptimal performance. To capture the geometric properties and to grow the decision trees of sufficient depth, we propose oblique double random forest. The oblique double random forest models are multivariate decision trees. At each non-leaf node, multisurface proximal support vector machine generates the optimal plane for better generalization performance. Also, different regularization techniques (Tikhonov regularization, axis-parallel split regularization, Null space regularization) are employed for tackling the small sample size problems in the decision trees of oblique double random forest. The proposed ensembles of decision trees produce trees with bigger size compared to the standard ensembles of decision trees as bagging is used at each non-leaf node which results in improved performance. The evaluation of the baseline models and the proposed oblique and rotation double random forest models is performed on benchmark 121 UCI datasets and real-world fisheries datasets. Both statistical analysis and the experimental results demonstrate the efficacy of the proposed oblique and rotation double random forest models compared to the baseline models on the benchmark datasets. (C) 2022 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Networks
ISSN
0893-6080
e-ISSN
1879-2782
Svazek periodika
153
Číslo periodika v rámci svazku
září 2022
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
496-517
Kód UT WoS článku
000828089700009
EID výsledku v databázi Scopus
—