Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparing stacking ensemble and deep learning for software project effort estimation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63570638" target="_blank" >RIV/70883521:28140/23:63570638 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10151867" target="_blank" >https://ieeexplore.ieee.org/document/10151867</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2023.3286372" target="_blank" >10.1109/ACCESS.2023.3286372</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparing stacking ensemble and deep learning for software project effort estimation

  • Popis výsledku v původním jazyce

    This study focuses on improving the accuracy of effort estimation by employing ensemble, deep learning, and transfer learning techniques. An ensemble approach is utilized, incorporating XGBoost, Random Forest, and Histogram Gradient Boost as generators to enhance predictive capabilities. The performance of the ensemble method is compared against both the deep learning approach and the PFA-IFPUG technique. Statistical criteria including MAE, SA, MMRE, PRED(0.25), MBRE, MIBRE, and relevant information related to MMRE and PRED(0.25) are employed for evaluation. The results demonstrate that combining regression models with Random Forest as the final regressor and XGBoost and Histogram Gradient Boost as prior generators yields more accurate effort estimation than other combinations. Furthermore, the findings highlight the potential of transfer learning in the deep learning method, which exhibits superior performance over the ensemble approach. This approach leverages pre-trained models and continuously improves performance by training on new datasets, providing valuable insights for cross-company and cross-time effort estimation problems. The ISBSG dataset is used to build the pre-trained model, and the inductive transfer learning approach is verified based on the Desharnais, Albrecht, Kitchenham, and China datasets. The study underscores the significance of transfer learning and the integration of domain-specific knowledge from existing models to enhance the performance of new models, thereby improving accuracy, reducing errors, and enhancing predictive capabilities in effort estimation. Author

  • Název v anglickém jazyce

    Comparing stacking ensemble and deep learning for software project effort estimation

  • Popis výsledku anglicky

    This study focuses on improving the accuracy of effort estimation by employing ensemble, deep learning, and transfer learning techniques. An ensemble approach is utilized, incorporating XGBoost, Random Forest, and Histogram Gradient Boost as generators to enhance predictive capabilities. The performance of the ensemble method is compared against both the deep learning approach and the PFA-IFPUG technique. Statistical criteria including MAE, SA, MMRE, PRED(0.25), MBRE, MIBRE, and relevant information related to MMRE and PRED(0.25) are employed for evaluation. The results demonstrate that combining regression models with Random Forest as the final regressor and XGBoost and Histogram Gradient Boost as prior generators yields more accurate effort estimation than other combinations. Furthermore, the findings highlight the potential of transfer learning in the deep learning method, which exhibits superior performance over the ensemble approach. This approach leverages pre-trained models and continuously improves performance by training on new datasets, providing valuable insights for cross-company and cross-time effort estimation problems. The ISBSG dataset is used to build the pre-trained model, and the inductive transfer learning approach is verified based on the Desharnais, Albrecht, Kitchenham, and China datasets. The study underscores the significance of transfer learning and the integration of domain-specific knowledge from existing models to enhance the performance of new models, thereby improving accuracy, reducing errors, and enhancing predictive capabilities in effort estimation. Author

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    2023

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    60590-60604

  • Kód UT WoS článku

    001018576300001

  • EID výsledku v databázi Scopus

    2-s2.0-85162635099