Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Incorporating statistical and machine learning techniques into the optimization of correction factors for software development effort estimation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63570759" target="_blank" >RIV/70883521:28140/23:63570759 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/smr.2611" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/smr.2611</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/smr.2611" target="_blank" >10.1002/smr.2611</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Incorporating statistical and machine learning techniques into the optimization of correction factors for software development effort estimation

  • Popis výsledku v původním jazyce

    Accurate effort estimation is necessary for efficient management of software development projects, as it relates to human resource management. Ensemble methods, which employ multiple statistical and machine learning techniques, are more robust, reliable, and accurate effort estimation techniques. This study develops a stacking ensemble model based on optimization correction factors by integrating seven statistical and machine learning techniques (K-nearest neighbor, random forest, support vector regression, multilayer perception, gradient boosting, linear regression, and decision tree). The grid search optimization method is used to obtain valid search ranges and optimal configuration values, allowing more accurate estimation. We conducted experiments to compare the proposed method with related methods, such as use case points-based single methods, optimization correction factors-based single methods, and ensemble methods. The estimation accuracies of the methods were evaluated using statistical tests and unbiased performance measures on a total of four datasets, thus demonstrating the effectiveness of the proposed method more clearly. The proposed method successfully maintained its estimation accuracy across the four experimental datasets and gave the best results in terms of the sum of squares errors, mean absolute error, root mean square error, mean balance relative error, mean inverted balance relative error, median of magnitude of relative error, and percentage of prediction (0.25). The p-value for the t-test showed that the proposed method is statistically superior to other methods in terms of estimation accuracy. The results show that the proposed method is a comprehensive approach for improving estimation accuracy and minimizing project risks in the early stages of software development.

  • Název v anglickém jazyce

    Incorporating statistical and machine learning techniques into the optimization of correction factors for software development effort estimation

  • Popis výsledku anglicky

    Accurate effort estimation is necessary for efficient management of software development projects, as it relates to human resource management. Ensemble methods, which employ multiple statistical and machine learning techniques, are more robust, reliable, and accurate effort estimation techniques. This study develops a stacking ensemble model based on optimization correction factors by integrating seven statistical and machine learning techniques (K-nearest neighbor, random forest, support vector regression, multilayer perception, gradient boosting, linear regression, and decision tree). The grid search optimization method is used to obtain valid search ranges and optimal configuration values, allowing more accurate estimation. We conducted experiments to compare the proposed method with related methods, such as use case points-based single methods, optimization correction factors-based single methods, and ensemble methods. The estimation accuracies of the methods were evaluated using statistical tests and unbiased performance measures on a total of four datasets, thus demonstrating the effectiveness of the proposed method more clearly. The proposed method successfully maintained its estimation accuracy across the four experimental datasets and gave the best results in terms of the sum of squares errors, mean absolute error, root mean square error, mean balance relative error, mean inverted balance relative error, median of magnitude of relative error, and percentage of prediction (0.25). The p-value for the t-test showed that the proposed method is statistically superior to other methods in terms of estimation accuracy. The results show that the proposed method is a comprehensive approach for improving estimation accuracy and minimizing project risks in the early stages of software development.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Software-Evolution and Process

  • ISSN

    2047-7473

  • e-ISSN

    2047-7481

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    Neuveden

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    37

  • Strana od-do

    1-37

  • Kód UT WoS článku

    001106698900001

  • EID výsledku v databázi Scopus

    2-s2.0-85169480450