Towards a correction factors-based software productivity using ensemble approach for early software development effort estimation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F22%3A63555918" target="_blank" >RIV/70883521:28140/22:63555918 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-09070-7_35" target="_blank" >http://dx.doi.org/10.1007/978-3-031-09070-7_35</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-09070-7_35" target="_blank" >10.1007/978-3-031-09070-7_35</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards a correction factors-based software productivity using ensemble approach for early software development effort estimation
Popis výsledku v původním jazyce
Accuracy of effort estimation is one of the necessary conditions for efficiently managing software development projects. Since the information available in the early stages of software development is insufficient, software sizing metrics are considered critical factors for effort estimation. However, there is no consistent method for converting software sizing into the corresponding effort. Previous estimation methods have not considered software productivity a critical factor in estimating effort based on software sizing. This paper proposes a software productivity model based on correction factors in the Optimizing Correction Factors method through an ensemble construction mechanism of three popular machine learning techniques. The results show that using the proposed software productivity minimizes the estimation error of the methods compared to using fixed productivity metrics. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Název v anglickém jazyce
Towards a correction factors-based software productivity using ensemble approach for early software development effort estimation
Popis výsledku anglicky
Accuracy of effort estimation is one of the necessary conditions for efficiently managing software development projects. Since the information available in the early stages of software development is insufficient, software sizing metrics are considered critical factors for effort estimation. However, there is no consistent method for converting software sizing into the corresponding effort. Previous estimation methods have not considered software productivity a critical factor in estimating effort based on software sizing. This paper proposes a software productivity model based on correction factors in the Optimizing Correction Factors method through an ensemble construction mechanism of three popular machine learning techniques. The results show that using the proposed software productivity minimizes the estimation error of the methods compared to using fixed productivity metrics. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Networks and Systems
ISBN
978-3-031-09069-1
ISSN
2367-3370
e-ISSN
2367-3389
Počet stran výsledku
13
Strana od-do
413-425
Název nakladatele
Springer International Publishing AG
Místo vydání
Basel
Místo konání akce
on-line
Datum konání akce
26. 4. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000893645700035