Analyzing correlation of the relationship between technical complexity factors and environmental complexity factors for software development effort estimation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F21%3A63537878" target="_blank" >RIV/70883521:28140/21:63537878 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-90318-3_65" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-90318-3_65</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-90318-3_65" target="_blank" >10.1007/978-3-030-90318-3_65</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analyzing correlation of the relationship between technical complexity factors and environmental complexity factors for software development effort estimation
Popis výsledku v původním jazyce
In this paper, a new method called Correlation-based Feature Selection in Correction Factors is proposed. The method is based on the feature selection method used in software development effort estimation to reduce redundant correction factors. In this paper, the impact of correlation-based feature selection on the method’s estimation accuracy is investigated. Multiple linear regression was used as the basic technique for the correction factors preprocessed by the feature selection method. The results were evaluated using six unbiased accuracy measures through the 5-fold cross-validation over the historical dataset. The proposed method leads to a significant improvement in estimation accuracy by simplifying the evaluation of correction factor values in the use case points method, thus increasing the usefulness of the proposed method in practice. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Název v anglickém jazyce
Analyzing correlation of the relationship between technical complexity factors and environmental complexity factors for software development effort estimation
Popis výsledku anglicky
In this paper, a new method called Correlation-based Feature Selection in Correction Factors is proposed. The method is based on the feature selection method used in software development effort estimation to reduce redundant correction factors. In this paper, the impact of correlation-based feature selection on the method’s estimation accuracy is investigated. Multiple linear regression was used as the basic technique for the correction factors preprocessed by the feature selection method. The results were evaluated using six unbiased accuracy measures through the 5-fold cross-validation over the historical dataset. The proposed method leads to a significant improvement in estimation accuracy by simplifying the evaluation of correction factor values in the use case points method, thus increasing the usefulness of the proposed method in practice. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Networks and Systems
ISBN
978-303090317-6
ISSN
23673370
e-ISSN
2367-3389
Počet stran výsledku
14
Strana od-do
835-848
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Berlín
Místo konání akce
Vsetín
Datum konání akce
1. 10. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—