An evaluation of technical and environmental complexity factors for improving use case points estimation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F20%3A63526962" target="_blank" >RIV/70883521:28140/20:63526962 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-63322-6_64" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-63322-6_64</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-63322-6_64" target="_blank" >10.1007/978-3-030-63322-6_64</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An evaluation of technical and environmental complexity factors for improving use case points estimation
Popis výsledku v původním jazyce
This paper presents a proposed method for improving the prediction ability of the Use Case Points method. Our main goal is to use the Least Absolute Shrinkage and Selection Operator Regression methods to find out which of the technical and environmental complexity factors significantly affect the accuracy of the Use Case Points method. Two regression models were used to calculate the selected significant variables. The results of several evaluation measures show that the proposed estimation method ability is better than the original Use Case Points method. The Sum of Squared Error of the proposed method is better than the results obtained by the original one. The study also enables project managers to understand how to assess the technical and environmental complexity factors better - since they do have an important impact on effort estimation. © 2020, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.
Název v anglickém jazyce
An evaluation of technical and environmental complexity factors for improving use case points estimation
Popis výsledku anglicky
This paper presents a proposed method for improving the prediction ability of the Use Case Points method. Our main goal is to use the Least Absolute Shrinkage and Selection Operator Regression methods to find out which of the technical and environmental complexity factors significantly affect the accuracy of the Use Case Points method. Two regression models were used to calculate the selected significant variables. The results of several evaluation measures show that the proposed estimation method ability is better than the original Use Case Points method. The Sum of Squared Error of the proposed method is better than the results obtained by the original one. The study also enables project managers to understand how to assess the technical and environmental complexity factors better - since they do have an important impact on effort estimation. © 2020, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing Volume 1294
ISBN
978-303063321-9
ISSN
21945357
e-ISSN
—
Počet stran výsledku
12
Strana od-do
757-768
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Berlín
Místo konání akce
Vsetín
Datum konání akce
14. 10. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—