Není k dispozici
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F05%3A03107958" target="_blank" >RIV/68407700:21230/05:03107958 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Contracting Optimally an Interval Matrix without Loosing Any Positive Semi-Definite Matrix Is a Tractable Problem
Popis výsledku v původním jazyce
In this paper, we show that the problem of computing the smallest interval submatrix of a given interval matrix [A] which contains all symmetric positive semi-definite (PSD) matrices of [A], is a linear matrix inequality (LMI) problem, a convex optimization problem over the cone of positive semidefinite matrices, that can be solved in polynomial time. From a constraint viewpoint, this problem corresponds to projecting the global constraint PSD (A) over its domain [A]. Projecting such a global constraint, in a constraint propagation process, makes it possible to avoid the decomposition of the PSD constraint into primitive constraints and thus increases the efficiency and the accuracy of the resolution.
Název v anglickém jazyce
Contracting Optimally an Interval Matrix without Loosing Any Positive Semi-Definite Matrix Is a Tractable Problem
Popis výsledku anglicky
In this paper, we show that the problem of computing the smallest interval submatrix of a given interval matrix [A] which contains all symmetric positive semi-definite (PSD) matrices of [A], is a linear matrix inequality (LMI) problem, a convex optimization problem over the cone of positive semidefinite matrices, that can be solved in polynomial time. From a constraint viewpoint, this problem corresponds to projecting the global constraint PSD (A) over its domain [A]. Projecting such a global constraint, in a constraint propagation process, makes it possible to avoid the decomposition of the PSD constraint into primitive constraints and thus increases the efficiency and the accuracy of the resolution.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2005
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Reliable Computing
ISSN
1385-3139
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
17
Strana od-do
1-17
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—