Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Není k dispozici

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F05%3A03109907" target="_blank" >RIV/68407700:21230/05:03109907 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Globally Convergent Range Image Registration by Graph Kernel Algorithm

  • Popis výsledku v původním jazyce

    Automatic range image registration without any knowledge of the viewpoint requires identification of common regions across different range images and then establishing point correspondences in these regions. We formulate this as a graph-based optimization problem. More specifically, we define a graph in which each vertex represents a putative match of two points, each edge represents binary consistency decision between two matches, and each edge orientation represents match quality from worse to betterputative match. Then strict sub-kernel defined in the graph is maximized. The maximum strict sub-kernel algorithm enables us to uniquely determine the largest consistent matching of points. To evaluate the quality of a single match, we employ the histogram of triple products that are generated by all surface normals in a point neighborhood. Our experimental results show the effectiveness of our method for coarse range image registration.

  • Název v anglickém jazyce

    Globally Convergent Range Image Registration by Graph Kernel Algorithm

  • Popis výsledku anglicky

    Automatic range image registration without any knowledge of the viewpoint requires identification of common regions across different range images and then establishing point correspondences in these regions. We formulate this as a graph-based optimization problem. More specifically, we define a graph in which each vertex represents a putative match of two points, each edge represents binary consistency decision between two matches, and each edge orientation represents match quality from worse to betterputative match. Then strict sub-kernel defined in the graph is maximized. The maximum strict sub-kernel algorithm enables us to uniquely determine the largest consistent matching of points. To evaluate the quality of a single match, we employ the histogram of triple products that are generated by all surface normals in a point neighborhood. Our experimental results show the effectiveness of our method for coarse range image registration.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2005

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    3DIM 2005: Proceedings of 5th International Conference on 3-D Digital Imaging and Modeling

  • ISBN

    0-7695-2327-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    377-384

  • Název nakladatele

    IEEE Computer Society Press

  • Místo vydání

    Los Alamitos

  • Místo konání akce

    Ottawa

  • Datum konání akce

    13. 6. 2005

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku