Není k dispozici
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F05%3A03113280" target="_blank" >RIV/68407700:21230/05:03113280 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mining the Strongest Patterns in Medical Sequential Data
Popis výsledku v původním jazyce
Sequential data represent an important source of automatically mined and potentially new medical knowledge. They can originate in various ways. Within the presented domain they come from a longitudinal preventive study of atherosclerosis - the data consist of series of long-term observations recording the development of risk factors and associated conditions. The intention is to identify frequent sequential patterns having any relation to an onset of any of the observed cardiovascular diseases. This paper focuses on application of inductive logic programming. The prospective patterns are based on first-order features automatically extracted from the sequential data. The features are further grouped in order to reach final complex patterns expressed asrules. The presented approach is also compared with the approaches published earlier (windowing, episode rules).
Název v anglickém jazyce
Mining the Strongest Patterns in Medical Sequential Data
Popis výsledku anglicky
Sequential data represent an important source of automatically mined and potentially new medical knowledge. They can originate in various ways. Within the presented domain they come from a longitudinal preventive study of atherosclerosis - the data consist of series of long-term observations recording the development of risk factors and associated conditions. The intention is to identify frequent sequential patterns having any relation to an onset of any of the observed cardiovascular diseases. This paper focuses on application of inductive logic programming. The prospective patterns are based on first-order features automatically extracted from the sequential data. The features are further grouped in order to reach final complex patterns expressed asrules. The presented approach is also compared with the approaches published earlier (windowing, episode rules).
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/KJB201210501" target="_blank" >KJB201210501: Logické strojové učení pro analýzu genomických dat</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2005
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
Praha
Název nakladatele resp. objednatele
—
Verze
—
Identifikační číslo nosiče
neuvedeno