Dolování silných vzorů z lékařských sekvenčních dat
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03155677" target="_blank" >RIV/68407700:21230/08:03155677 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
čeština
Název v původním jazyce
Dolování silných vzorů z lékařských sekvenčních dat
Popis výsledku v původním jazyce
Sekvenční data jsou důležitým zdrojem lékařských znalostí. Tato specifická data mohou vznikat řadou různých způsobů. V tomto článku na příkladu konkrétní studie prezentujeme obecné postupy pro jejich dolování. Jde o preventivní dlouhodobou studii atherosklerózy - data jsou výsledkem dvě dekády trvajícího sledování vývoje rizikových faktorů a přidružených jevů. Hlavním cílem je identifikovat časté sekvenční vzory, tj. opakující se časové jevy, a studovat jejich možnou souvislost s objevením jedné ze sledovaných kardiovaskulárních nemocí. Z širší škály dostupných metod se soustředíme na induktivní logické programování, které potenciální vzory vyjadřuje ve formě rysů v predikátové logice prvního řádu. Rysy jsou nejprve automaticky extrahovány a následně sdružovány do pravidel, která představují výstupní formu získané znalosti. Navržený postup je porovnán s tradičnějšími metodami publikovanými dříve. Jde o metodu posuvných oken a epizodní pravidla.
Název v anglickém jazyce
Mining the Strongest Patterns in Medical Sequential Data
Popis výsledku anglicky
Sequential data represent an important source of automatically mined and potentially new medical knowledge. They can originate in various ways. Within the presented domain they come from a longitudinal preventive study of atherosclerosis - the data consists of series of long-term observations recording the development of risk factors and associated conditions. The intention is to identify frequent sequential patterns having any relation to an onset of any of the observed cardiovascular diseases. This paper focuses on application of inductive logic programming. The prospective patterns are based on first-order features automatically extracted from the sequential data. The features are further grouped in order to reach final complex patterns expressed asrules. The presented approach is also compared with the approaches published earlier (windowing, episode rules).
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1ET101210513" target="_blank" >1ET101210513: Relační strojové učení pro průzkum biomedicínských dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Lékař a technika
ISSN
0301-5491
e-ISSN
—
Svazek periodika
38
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—