Není k dispozici
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F05%3A03113409" target="_blank" >RIV/68407700:21230/05:03113409 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bio-inspired Methods for Analysis and Classification of Reading Eye Movements of Dyslexic Children.
Popis výsledku v původním jazyce
The paper describes real practical problem of analyzing diagnostic significance of dyslexic eye movements. The biologically inspired methods were used and compared with classical methods of artificial intelligence. Eye movements of 52 school children were measured using videooculographic (VOG) technique, during a reading task. There were three groups of subjects - normal readers, retarded readers and dyslexics. The main goal was to analyze the possibility of dyslexia detection only from the eye movementsignal. Time and frequency domain features were extracted and subset of significant features was chosen by a simple feature selection method. The selected feature subset was visualized using a self-organizing map (SOM). Clusters were formed by the SOM proving that proposed methodology is suitable for automatic dyslexia detection.
Název v anglickém jazyce
Bio-inspired Methods for Analysis and Classification of Reading Eye Movements of Dyslexic Children.
Popis výsledku anglicky
The paper describes real practical problem of analyzing diagnostic significance of dyslexic eye movements. The biologically inspired methods were used and compared with classical methods of artificial intelligence. Eye movements of 52 school children were measured using videooculographic (VOG) technique, during a reading task. There were three groups of subjects - normal readers, retarded readers and dyslexics. The main goal was to analyze the possibility of dyslexia detection only from the eye movementsignal. Time and frequency domain features were extracted and subset of significant features was chosen by a simple feature selection method. The selected feature subset was visualized using a self-organizing map (SOM). Clusters were formed by the SOM proving that proposed methodology is suitable for automatic dyslexia detection.
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2005
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
—
Název nakladatele resp. objednatele
—
Verze
—
Identifikační číslo nosiče
neuvedeno