Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Quantitative and Ordinal Association Rules Mining (QAR Mining)

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F06%3A00121132" target="_blank" >RIV/68407700:21230/06:00121132 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Quantitative and Ordinal Association Rules Mining (QAR Mining)

  • Popis výsledku v původním jazyce

    Association rules have exhibited an excellent ability to identify interesting association relationships among a set of binary variables describing huge amount of transactions. Although the rules can be relatively easily generalized to other variable types, the generalization can result in a computationally expensive algorithm generating a prohibitive number of redundant rules of little significance. This danger especially applies to quantitative and ordinal variables. This paper presents and verifies analternative approach to the quantitative and ordinal association rule mining. In this approach, quantitative or ordinal variables are not immediately transformed into a set of binary variables. Instead, it applies simple arithmetic operations in order to construct the cedents and searches for areas of increased association which are finally decomposed into conjunctions of literals. This scenario outputs rules that do not syntactically differentiate from classical association rules.

  • Název v anglickém jazyce

    Quantitative and Ordinal Association Rules Mining (QAR Mining)

  • Popis výsledku anglicky

    Association rules have exhibited an excellent ability to identify interesting association relationships among a set of binary variables describing huge amount of transactions. Although the rules can be relatively easily generalized to other variable types, the generalization can result in a computationally expensive algorithm generating a prohibitive number of redundant rules of little significance. This danger especially applies to quantitative and ordinal variables. This paper presents and verifies analternative approach to the quantitative and ordinal association rule mining. In this approach, quantitative or ordinal variables are not immediately transformed into a set of binary variables. Instead, it applies simple arithmetic operations in order to construct the cedents and searches for areas of increased association which are finally decomposed into conjunctions of literals. This scenario outputs rules that do not syntactically differentiate from classical association rules.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2006

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Knowledge-Based Intelligent Information and Engineering Systems, Part I

  • ISBN

    3-540-46535-9

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

  • Název nakladatele

    Springer

  • Místo vydání

    Berlin

  • Místo konání akce

    Bournemouth

  • Datum konání akce

    9. 10. 2006

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000242122000024