Quantitative and Ordinal Association Rules Mining (QAR Mining)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F06%3A00121132" target="_blank" >RIV/68407700:21230/06:00121132 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantitative and Ordinal Association Rules Mining (QAR Mining)
Popis výsledku v původním jazyce
Association rules have exhibited an excellent ability to identify interesting association relationships among a set of binary variables describing huge amount of transactions. Although the rules can be relatively easily generalized to other variable types, the generalization can result in a computationally expensive algorithm generating a prohibitive number of redundant rules of little significance. This danger especially applies to quantitative and ordinal variables. This paper presents and verifies analternative approach to the quantitative and ordinal association rule mining. In this approach, quantitative or ordinal variables are not immediately transformed into a set of binary variables. Instead, it applies simple arithmetic operations in order to construct the cedents and searches for areas of increased association which are finally decomposed into conjunctions of literals. This scenario outputs rules that do not syntactically differentiate from classical association rules.
Název v anglickém jazyce
Quantitative and Ordinal Association Rules Mining (QAR Mining)
Popis výsledku anglicky
Association rules have exhibited an excellent ability to identify interesting association relationships among a set of binary variables describing huge amount of transactions. Although the rules can be relatively easily generalized to other variable types, the generalization can result in a computationally expensive algorithm generating a prohibitive number of redundant rules of little significance. This danger especially applies to quantitative and ordinal variables. This paper presents and verifies analternative approach to the quantitative and ordinal association rule mining. In this approach, quantitative or ordinal variables are not immediately transformed into a set of binary variables. Instead, it applies simple arithmetic operations in order to construct the cedents and searches for areas of increased association which are finally decomposed into conjunctions of literals. This scenario outputs rules that do not syntactically differentiate from classical association rules.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Knowledge-Based Intelligent Information and Engineering Systems, Part I
ISBN
3-540-46535-9
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Bournemouth
Datum konání akce
9. 10. 2006
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000242122000024