Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Není k dispozici

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F06%3A03120561" target="_blank" >RIV/68407700:21230/06:03120561 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Particle Swarm Optimization for Hidden Markov Models with Application to Intracranial Pressure Analysis

  • Popis výsledku v původním jazyce

    The paper presents new application of Particle Swarm Optimization for training Hidden Markov Models. The approach is verified on artificial data and further, the application to Intracranial Pressure (ICP) analysis is described. In comparison with Expectation Maximization algorithm, commonly used for the HMM training problem, the PSO approach is less sensitive on sticking to local optima because of its global character. However this advantage depends on character of the particular problem. The IC analysis is the case of such problem where it is suitable to use the PSO strategy. This is demonstrated by better classification result (85.1%) in comparison with the EM algorithm (76.3%).

  • Název v anglickém jazyce

    Particle Swarm Optimization for Hidden Markov Models with Application to Intracranial Pressure Analysis

  • Popis výsledku anglicky

    The paper presents new application of Particle Swarm Optimization for training Hidden Markov Models. The approach is verified on artificial data and further, the application to Intracranial Pressure (ICP) analysis is described. In comparison with Expectation Maximization algorithm, commonly used for the HMM training problem, the PSO approach is less sensitive on sticking to local optima because of its global character. However this advantage depends on character of the particular problem. The IC analysis is the case of such problem where it is suitable to use the PSO strategy. This is demonstrated by better classification result (85.1%) in comparison with the EM algorithm (76.3%).

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2006

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Analysis of Biomedical Signals and Images - Proceedings of Biosignal 2006

  • ISBN

    80-214-3152-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    3

  • Strana od-do

    175-177

  • Název nakladatele

    VUTIUM Press

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    28. 6. 2006

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku