Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multiview 3D Tracking with an Incrementally Constructed 3D Model

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F06%3A03124929" target="_blank" >RIV/68407700:21230/06:03124929 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multiview 3D Tracking with an Incrementally Constructed 3D Model

  • Popis výsledku v původním jazyce

    A novel object representation for tracking is proposed. The tracked object is represented as a constellation of spatially localised linear predictors which are learned on a single training image. In the learning stage, sets of pixels whose intensities allow for optimal least square predictions of the transformations are selected as a support of the linear predictor. The approach comprises three contributions: learning object specific linear predictors, explicitly dealing with the predictor precision - computational complexity trade-off and selecting a view-specific set of predictors suitable for global object motion estimate. Robustness to occlusion is achieved by RANSAC procedure. The learned tracker is very efficient, achieving frame rate generally higher than 30 frames per second despite the Matlab implementation.

  • Název v anglickém jazyce

    Multiview 3D Tracking with an Incrementally Constructed 3D Model

  • Popis výsledku anglicky

    A novel object representation for tracking is proposed. The tracked object is represented as a constellation of spatially localised linear predictors which are learned on a single training image. In the learning stage, sets of pixels whose intensities allow for optimal least square predictions of the transformations are selected as a support of the linear predictor. The approach comprises three contributions: learning object specific linear predictors, explicitly dealing with the predictor precision - computational complexity trade-off and selecting a view-specific set of predictors suitable for global object motion estimate. Robustness to occlusion is achieved by RANSAC procedure. The learned tracker is very efficient, achieving frame rate generally higher than 30 frames per second despite the Matlab implementation.

Klasifikace

  • Druh

    A - Audiovizuální tvorba

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1M0567" target="_blank" >1M0567: Centrum aplikované kybernetiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2006

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • ISBN

  • Místo vydání

    Piscataway

  • Název nakladatele resp. objednatele

  • Verze

  • Identifikační číslo nosiče

    neuvedeno