Iterativni algebry v plne sile
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F06%3A03125206" target="_blank" >RIV/68407700:21230/06:03125206 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Iterative Algebras at Work
Popis výsledku v původním jazyce
Iterative theories, which were introduced by Calvin Elgot, formalise potentially infinite computations as unique solutions of recursive equations. One of the main results of Elgot and his coauthors is a description of a free iterative theory as the theory of all rational trees. Their algebraic proof of this fact is extremely complicated. In our paper we show that by starting with iterative algebras, that is, algebras admitting a unique solution of all systems of flat recursive equations, a free iterative theory is obtained as the theory of free iterative algebras. The (coalgebraic) proof we present is dramatically simpler than the original algebraic one. Despite this, our result is much more general: we describe a free iterative theory on any finitaryendofunctor of every locally presentable category.
Název v anglickém jazyce
Iterative Algebras at Work
Popis výsledku anglicky
Iterative theories, which were introduced by Calvin Elgot, formalise potentially infinite computations as unique solutions of recursive equations. One of the main results of Elgot and his coauthors is a description of a free iterative theory as the theory of all rational trees. Their algebraic proof of this fact is extremely complicated. In our paper we show that by starting with iterative algebras, that is, algebras admitting a unique solution of all systems of flat recursive equations, a free iterative theory is obtained as the theory of free iterative algebras. The (coalgebraic) proof we present is dramatically simpler than the original algebraic one. Despite this, our result is much more general: we describe a free iterative theory on any finitaryendofunctor of every locally presentable category.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F06%2F0664" target="_blank" >GA201/06/0664: Kategoriální metody teorie struktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Structures in Computer Science
ISSN
0960-1295
e-ISSN
—
Svazek periodika
2006
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
47
Strana od-do
1085-1131
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—