Windowpane Detection based on Maximum Aposteriori Labeling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F07%3A00218868" target="_blank" >RIV/68407700:21230/07:00218868 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Windowpane Detection based on Maximum Aposteriori Labeling
Popis výsledku v původním jazyce
Segmentation of windowpanes in the images of facades is formulated as a task of maximum aposteriori labeling. Assuming orthographic rectification of the building facade, the windowpanes are always axis-parallel rectangles of relatively low variability inappearance. Every image pixel has one of 10 possible labels, and the adjacent pixels are interconnected via links which defines allowed label configuration, such that the labels are forced to form a set of non-overlapping rectangles. The task of findingthe most probable labeling of a given image leads to NP-hard discrete optimization problem. However, we find an approximate solution using a general solver suitable for such problems and we obtain promising results which we demonstrate on several experiments. Substantial difference between the presented paper and state-of-the-art papers on segmentation based on Markov Random Fields is that we have a strong structure model, forcing the labels to form rectangles, while other methods does
Název v anglickém jazyce
Windowpane Detection based on Maximum Aposteriori Labeling
Popis výsledku anglicky
Segmentation of windowpanes in the images of facades is formulated as a task of maximum aposteriori labeling. Assuming orthographic rectification of the building facade, the windowpanes are always axis-parallel rectangles of relatively low variability inappearance. Every image pixel has one of 10 possible labels, and the adjacent pixels are interconnected via links which defines allowed label configuration, such that the labels are forced to form a set of non-overlapping rectangles. The task of findingthe most probable labeling of a given image leads to NP-hard discrete optimization problem. However, we find an approximate solution using a general solver suitable for such problems and we obtain promising results which we demonstrate on several experiments. Substantial difference between the presented paper and state-of-the-art papers on segmentation based on Markov Random Fields is that we have a strong structure model, forcing the labels to form rectangles, while other methods does
Klasifikace
Druh
V<sub>souhrn</sub> - Souhrnná výzkumná zpráva
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Počet stran výsledku
12
Místo vydání
Praha
Název nakladatele resp. objednatele
Center for Machine Perception, K13133 FEE, Czech Technical University
Verze
—