Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Odhad řádu modelu ICA pomocí clusterovací metody

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F07%3A03135611" target="_blank" >RIV/68407700:21230/07:03135611 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    ICA Model Order Estimation Using Clustering Method

  • Popis výsledku v původním jazyce

    In this paper a novel approach for independent component analysis (ICA) model order estimation of movement electroencephalogram (EEG) signals is described. The application is targeted to the brain-computer interface (BCI) EEG preprocessing. The selectionof only movement related ICs might lead to BCI EEG classification score increasing. The real number of the independent sources in the brain is an important parameter of the preprocessing step. Previously, we used principal component analysis (PCA) for estimation of the number of the independent sources. However, PCA stimates only the number of uncorrelated and not independent components ignoring the higher-order signal statistics. In this work, we use another approach - selection of highly correlated ICs from several ICA runs. The ICA model order estimation is done at significance level alpha = 0.05 and the model order is less or more dependent on ICA algorithm and its parameters.

  • Název v anglickém jazyce

    ICA Model Order Estimation Using Clustering Method

  • Popis výsledku anglicky

    In this paper a novel approach for independent component analysis (ICA) model order estimation of movement electroencephalogram (EEG) signals is described. The application is targeted to the brain-computer interface (BCI) EEG preprocessing. The selectionof only movement related ICs might lead to BCI EEG classification score increasing. The real number of the independent sources in the brain is an important parameter of the preprocessing step. Previously, we used principal component analysis (PCA) for estimation of the number of the independent sources. However, PCA stimates only the number of uncorrelated and not independent components ignoring the higher-order signal statistics. In this work, we use another approach - selection of highly correlated ICs from several ICA runs. The ICA model order estimation is done at significance level alpha = 0.05 and the model order is less or more dependent on ICA algorithm and its parameters.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JA - Elektronika a optoelektronika, elektrotechnika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GD102%2F03%2FH085" target="_blank" >GD102/03/H085: Modelování biologických a řečových signálů</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2007

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Radioengineering

  • ISSN

    1210-2512

  • e-ISSN

  • Svazek periodika

    16

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    7

  • Strana od-do

    51-57

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus