Basic Data Reduction Techniques and Their Influence on GAME Modeling Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A00145875" target="_blank" >RIV/68407700:21230/08:00145875 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Basic Data Reduction Techniques and Their Influence on GAME Modeling Method
Popis výsledku v původním jazyce
The amount of data produced by medicine diagnosis and other means constantly increases - in both number of measurements and in number of dimensions. For many modeling or data mining methods this increase causes problems. First main problem is well knowncurse of dimensionality. The second is the amount of training data items which lengthens the training process. Both these problems reduces usability of modeling methods. The aim of this article is to study several data reduction techniques and test theirinfluence on one particular inductive modeling method - GAME - developed in our department. Application of each method affecting the performance (accuracy) and learning time of the GAME modeling method has been studied. To obtain representative resultsseveral datasets has been tested - for example well known Iris dataset or realworld application for medical data (e.g. EEG classification).
Název v anglickém jazyce
Basic Data Reduction Techniques and Their Influence on GAME Modeling Method
Popis výsledku anglicky
The amount of data produced by medicine diagnosis and other means constantly increases - in both number of measurements and in number of dimensions. For many modeling or data mining methods this increase causes problems. First main problem is well knowncurse of dimensionality. The second is the amount of training data items which lengthens the training process. Both these problems reduces usability of modeling methods. The aim of this article is to study several data reduction techniques and test theirinfluence on one particular inductive modeling method - GAME - developed in our department. Application of each method affecting the performance (accuracy) and learning time of the GAME modeling method has been studied. To obtain representative resultsseveral datasets has been tested - for example well known Iris dataset or realworld application for medical data (e.g. EEG classification).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/KJB201210701" target="_blank" >KJB201210701: Automatická extrakce znalostí</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of UKSIM Tenth International Conference on Computer Modelling and Simulation
ISBN
0-7695-3114-8
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
138-143
Název nakladatele
IEEE Computer Society
Místo vydání
Los Alamitos
Místo konání akce
Cambridge
Datum konání akce
1. 4. 2008
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000304857300025