Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimalni Randomizovany RANSAC

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03145145" target="_blank" >RIV/68407700:21230/08:03145145 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optimal Randomized RANSAC

  • Popis výsledku v původním jazyce

    A randomized model verification strategy for RANSAC is presented. The proposed method finds, like RANSAC, a solution that is optimal with user-specified probability. The solution is found in time that is close to the shortest possible and superior to anydeterministic verification strategy. A provably fastest model verification strategy is designed for the (theoretical) situation when the contamination of data by outliers is known. In this case, the algorithm is the fastest possible (on the average) ofall randomized RANSAC algorithms guaranteeing a confidence in the solution. The derivation of the optimality property is based on Wald's theory of sequential decision making, in particular, a modified sequential probability ratio test (SPRT). Next, the R-RANSAC with SPRT algorithm is introduced. The algorithm removes the requirement for a priori knowledge of the fraction of outliers and estimates the quantity online. We show experimentally that on standard test data, the method has perf

  • Název v anglickém jazyce

    Optimal Randomized RANSAC

  • Popis výsledku anglicky

    A randomized model verification strategy for RANSAC is presented. The proposed method finds, like RANSAC, a solution that is optimal with user-specified probability. The solution is found in time that is close to the shortest possible and superior to anydeterministic verification strategy. A provably fastest model verification strategy is designed for the (theoretical) situation when the contamination of data by outliers is known. In this case, the algorithm is the fastest possible (on the average) ofall randomized RANSAC algorithms guaranteeing a confidence in the solution. The derivation of the optimality property is based on Wald's theory of sequential decision making, in particular, a modified sequential probability ratio test (SPRT). Next, the R-RANSAC with SPRT algorithm is introduced. The algorithm removes the requirement for a priori knowledge of the fraction of outliers and estimates the quantity online. We show experimentally that on standard test data, the method has perf

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA102%2F07%2F1317" target="_blank" >GA102/07/1317: Metody pro vizuální rozpoznávání velkých souborů elastických objektů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Pattern Analysis and Machine Intelligence

  • ISSN

    0162-8828

  • e-ISSN

  • Svazek periodika

    30

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

    000256679700012

  • EID výsledku v databázi Scopus