Wald's Sequential Analysis for Time-constrained Vision Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03151197" target="_blank" >RIV/68407700:21230/08:03151197 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Wald's Sequential Analysis for Time-constrained Vision Problems
Popis výsledku v původním jazyce
In detection and matching problems in computer vision, both classification errors and time to decision characterize the quality of an algorithmic solution. It is shown how to formalize such problems in the framework of sequential decision-making and derive quasi-optimal time-constrained solutions for three vision problems. The methodology is applied to face and interest point detection and to the RANSAC robust estimator. Error rates of the face detector proposed algorithm are comparable to the state-of-the-art methods. In the interest point application, the output of the Hessian-Laplace detector [Mikolajczyk-IJCV04] is approximated by a sequential WaldBoost classifier which is about five times faster than the original with comparable repeatability. A sequential strategy based on Wald's SPRT for evaluation of model quality in RANSAC leads to significant speed-up in geometric matching problems.
Název v anglickém jazyce
Wald's Sequential Analysis for Time-constrained Vision Problems
Popis výsledku anglicky
In detection and matching problems in computer vision, both classification errors and time to decision characterize the quality of an algorithmic solution. It is shown how to formalize such problems in the framework of sequential decision-making and derive quasi-optimal time-constrained solutions for three vision problems. The methodology is applied to face and interest point detection and to the RANSAC robust estimator. Error rates of the face detector proposed algorithm are comparable to the state-of-the-art methods. In the interest point application, the output of the Hessian-Laplace detector [Mikolajczyk-IJCV04] is approximated by a sequential WaldBoost classifier which is about five times faster than the original with comparable repeatability. A sequential strategy based on Wald's SPRT for evaluation of model quality in RANSAC leads to significant speed-up in geometric matching problems.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F06%2F1821" target="_blank" >GA201/06/1821: Algoritmy rozpoznávání obrazu</a><br>
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Unifying Perspectives in Computational and Robot Vision
ISBN
978-0-387-75521-2
Počet stran výsledku
21
Strana od-do
—
Počet stran knihy
212
Název nakladatele
Springer
Místo vydání
New York
Kód UT WoS kapitoly
—