Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimalizace markovských modelů pomocí SWO

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03145659" target="_blank" >RIV/68407700:21230/08:03145659 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Particle Swarm Optimization of Hidden Markov Models: a comparative study

  • Popis výsledku v původním jazyce

    In recent years, Hidden Markov Models (HMM) have been increasingly applied in data mining applications. However, most authors have used classical optimization Expectation- Maximization (EM) scheme. A new method of HMM learning based on Particle Swarm Optimization (PSO) has been developed. Along with others global approaches as Simulating Annealing (SIM) and Genetic Algorithms (GA) the following local gradient methods have been also compared: classical Expectation-Maximization algorithm, Maximum A Posteriory approach (MAP) and Bayes Variational learning (VAR). The methods are evaluated on a synthetic data set using different evaluation criteria including classification problem. The most reliable optimization approach in terms of performance, numerical stability and speed is VAR learning followed by PSO approach.

  • Název v anglickém jazyce

    Particle Swarm Optimization of Hidden Markov Models: a comparative study

  • Popis výsledku anglicky

    In recent years, Hidden Markov Models (HMM) have been increasingly applied in data mining applications. However, most authors have used classical optimization Expectation- Maximization (EM) scheme. A new method of HMM learning based on Particle Swarm Optimization (PSO) has been developed. Along with others global approaches as Simulating Annealing (SIM) and Genetic Algorithms (GA) the following local gradient methods have been also compared: classical Expectation-Maximization algorithm, Maximum A Posteriory approach (MAP) and Bayes Variational learning (VAR). The methods are evaluated on a synthetic data set using different evaluation criteria including classification problem. The most reliable optimization approach in terms of performance, numerical stability and speed is VAR learning followed by PSO approach.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Distributed Human-Machine Systems

  • ISBN

    978-80-01-04027-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

  • Název nakladatele

    CTU Publishing House

  • Místo vydání

    Praha

  • Místo konání akce

    Athens

  • Datum konání akce

    9. 3. 2008

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku