Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Behaviour of FeRaNGA method for Feature Ranking during learning process using Inductive Modelling

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03145893" target="_blank" >RIV/68407700:21230/08:03145893 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Behaviour of FeRaNGA method for Feature Ranking during learning process using Inductive Modelling

  • Popis výsledku v původním jazyce

    Nowadays a Feature Ranking (FR) is commonly used method for obtaining information about a large data sets with various dimensionality. This knowledge can be used in a next step of data processing. Accuracy and a speed of experiments can be improved by this. Our approach is based on Artificial Neural Networks (ANN) instead of classical statistical methods. We obtain the knowledge as a by-product of Niching Genetic Algorithm (NGA) used for creation of a feedforward hybrid neural network called GAME. In this paper we present a behaviour of FeRaNGA (Feature Ranking method using Niching Genetic Algorithm(NGA)) during a learning process, especially in every layer of generated GAME network. We want to answer how important is NGA configuration and processing procedure for FR results because behaviour of GA is nondeterministic and thereby were results of FeRaNGA also indefinitive. This method ranks features depending on a percentage of processing elements that survived a selection process.

  • Název v anglickém jazyce

    Behaviour of FeRaNGA method for Feature Ranking during learning process using Inductive Modelling

  • Popis výsledku anglicky

    Nowadays a Feature Ranking (FR) is commonly used method for obtaining information about a large data sets with various dimensionality. This knowledge can be used in a next step of data processing. Accuracy and a speed of experiments can be improved by this. Our approach is based on Artificial Neural Networks (ANN) instead of classical statistical methods. We obtain the knowledge as a by-product of Niching Genetic Algorithm (NGA) used for creation of a feedforward hybrid neural network called GAME. In this paper we present a behaviour of FeRaNGA (Feature Ranking method using Niching Genetic Algorithm(NGA)) during a learning process, especially in every layer of generated GAME network. We want to answer how important is NGA configuration and processing procedure for FR results because behaviour of GA is nondeterministic and thereby were results of FeRaNGA also indefinitive. This method ranks features depending on a percentage of processing elements that survived a selection process.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/KJB201210701" target="_blank" >KJB201210701: Automatická extrakce znalostí</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 2nd International Conference on Inductive Modelling

  • ISBN

    978-966-02-4889-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

  • Název nakladatele

    Ukr. INTEI

  • Místo vydání

    Kiev

  • Místo konání akce

    Kyjev

  • Datum konání akce

    15. 9. 2008

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku