Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Efficient Sequential Correspondence Selection by Cosegmentation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03150796" target="_blank" >RIV/68407700:21230/08:03150796 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Efficient Sequential Correspondence Selection by Cosegmentation

  • Popis výsledku v původním jazyce

    In many retrieval, object recognition and wide baseline stereo methods, correspondences of interest points (distinguished regions, transformation covariant points) are established possibly sublinearly by matching a compact descriptor such as SIFT. We show that a subsequent cosegmentation process coupled with a quasi-optimal sequential decision process leads to a correspondence verification procedure that has (i) high precision (is highly discriminative) (ii) good recall and (iii) is fast. The sequentialdecision on the correctness of a correspondence is based on trivial attributes of a modified dense stereo matching algorithm. The attributes are projected on a prominent discriminative direction by SVM. Wald's sequential probability ratio test is performed for SVM projection computed on progressively larger co-segmented regions. Experimentally we show that the process significantly outperforms the standard correspondence selection process based on SIFT distance ratios on challenging mat

  • Název v anglickém jazyce

    Efficient Sequential Correspondence Selection by Cosegmentation

  • Popis výsledku anglicky

    In many retrieval, object recognition and wide baseline stereo methods, correspondences of interest points (distinguished regions, transformation covariant points) are established possibly sublinearly by matching a compact descriptor such as SIFT. We show that a subsequent cosegmentation process coupled with a quasi-optimal sequential decision process leads to a correspondence verification procedure that has (i) high precision (is highly discriminative) (ii) good recall and (iii) is fast. The sequentialdecision on the correctness of a correspondence is based on trivial attributes of a modified dense stereo matching algorithm. The attributes are projected on a prominent discriminative direction by SVM. Wald's sequential probability ratio test is performed for SVM projection computed on progressively larger co-segmented regions. Experimentally we show that the process significantly outperforms the standard correspondence selection process based on SIFT distance ratios on challenging mat

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    CVPR 2008: Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

  • ISBN

    978-1-4244-2242-5

  • ISSN

    1063-6919

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

  • Název nakladatele

    Omnipress

  • Místo vydání

    Medison

  • Místo konání akce

    Anchorage, Alaska

  • Datum konání akce

    24. 6. 2008

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000259736800134