LP-relaxation of binarized energy minimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03150825" target="_blank" >RIV/68407700:21230/08:03150825 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
LP-relaxation of binarized energy minimization
Popis výsledku v původním jazyce
We address the problem of energy minimization, which is (1) generally NP-complete and (2) involves many discrete variables - commonly a 2D array of them, arising from an MRF model. One of the approaches to the problem is to formulate it as integer linearprogramming and relax integrality constraints. However this can be done in a number of possible ways. One, widely applied previously (LP-1) [19, 13, 4, 22, 9, 23], appears to lead to a large-scale linear program which is not practical to solve with general LP methods. A number of algorithms were developed which attempt to solve the problem exploiting its structure [14, 23, 22, 9], however their common drawback is that they may converge to a suboptimal point. The other LP relaxation we consider here isconstructed by (1) refor- mulating the optimization problem in the form of a function of binary vari- ables [18], and (2) applying the roof duality relaxation [6] to the reformulated problem. We refer to the resulting relaxation as LP-2.
Název v anglickém jazyce
LP-relaxation of binarized energy minimization
Popis výsledku anglicky
We address the problem of energy minimization, which is (1) generally NP-complete and (2) involves many discrete variables - commonly a 2D array of them, arising from an MRF model. One of the approaches to the problem is to formulate it as integer linearprogramming and relax integrality constraints. However this can be done in a number of possible ways. One, widely applied previously (LP-1) [19, 13, 4, 22, 9, 23], appears to lead to a large-scale linear program which is not practical to solve with general LP methods. A number of algorithms were developed which attempt to solve the problem exploiting its structure [14, 23, 22, 9], however their common drawback is that they may converge to a suboptimal point. The other LP relaxation we consider here isconstructed by (1) refor- mulating the optimization problem in the form of a function of binary vari- ables [18], and (2) applying the roof duality relaxation [6] to the reformulated problem. We refer to the resulting relaxation as LP-2.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/7E08031" target="_blank" >7E08031: Dynamic Interactive Perception-action Learning in Cognitive Systems</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů