Multiview Reconstruction by Gradual Enforcement of Relative Pose Transitivity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03150826" target="_blank" >RIV/68407700:21230/08:03150826 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiview Reconstruction by Gradual Enforcement of Relative Pose Transitivity
Popis výsledku v původním jazyce
It is known that the relative camera pose estimation is biased, e.g., due to noise in image correspondences. This bias prevents pairwise reconstructions from accurate alignment when estimating the multiview reconstruction. This work proposes a new methodfor making the relative camera poses more consistent. New constraints on transitivity of relative rotations, translations and their combination are proposed. An optimization based on the bundle adjustment starts with relative poses consistent with pairwise image measurements. The transitivity constraints are enforced gradually by enlarging their weights. Since the enlarging is done gradually, the relative poses are kept consistent with the data during the whole optimization, preventing so falling intodistant local minima. The technique is demonstrated on difficult wide base-line image sets to provide lower residuals and more accurate reconstructions.
Název v anglickém jazyce
Multiview Reconstruction by Gradual Enforcement of Relative Pose Transitivity
Popis výsledku anglicky
It is known that the relative camera pose estimation is biased, e.g., due to noise in image correspondences. This bias prevents pairwise reconstructions from accurate alignment when estimating the multiview reconstruction. This work proposes a new methodfor making the relative camera poses more consistent. New constraints on transitivity of relative rotations, translations and their combination are proposed. An optimization based on the bundle adjustment starts with relative poses consistent with pairwise image measurements. The transitivity constraints are enforced gradually by enlarging their weights. Since the enlarging is done gradually, the relative poses are kept consistent with the data during the whole optimization, preventing so falling intodistant local minima. The technique is demonstrated on difficult wide base-line image sets to provide lower residuals and more accurate reconstructions.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1ET101210406" target="_blank" >1ET101210406: Automatická konstrukce trojrozměrných virtuálních modelů z fotografií</a><br>
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů