Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03150851" target="_blank" >RIV/68407700:21230/08:03150851 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases

  • Popis výsledku v původním jazyce

    The state of the art in visual object retrieval from large databases is achieved by systems that are inspired by text retrieval. A key component of these approaches is that local regions of images are characterized using high-dimensional descriptors which are then mapped to .visual words. selected from a discrete vocabulary. This paper explores techniques to map each visual region to a weighted set of words, allowing the inclusion of features which were lost in the quantization stage of previous systems. The set of visual words is obtained by selecting words based on proximity in descriptor space. We describe how this representation may be incorporated into a standard tf-idf architecture, and how spatial verification is modified in the case of this soft-assignment.

  • Název v anglickém jazyce

    Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases

  • Popis výsledku anglicky

    The state of the art in visual object retrieval from large databases is achieved by systems that are inspired by text retrieval. A key component of these approaches is that local regions of images are characterized using high-dimensional descriptors which are then mapped to .visual words. selected from a discrete vocabulary. This paper explores techniques to map each visual region to a weighted set of words, allowing the inclusion of features which were lost in the quantization stage of previous systems. The set of visual words is obtained by selecting words based on proximity in descriptor space. We describe how this representation may be incorporated into a standard tf-idf architecture, and how spatial verification is modified in the case of this soft-assignment.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/7E08031" target="_blank" >7E08031: Dynamic Interactive Perception-action Learning in Cognitive Systems</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    CVPR 2008: Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

  • ISBN

    978-1-4244-2242-5

  • ISSN

    1063-6919

  • e-ISSN

  • Počet stran výsledku

    1

  • Strana od-do

  • Název nakladatele

    Omnipress

  • Místo vydání

    Medison

  • Místo konání akce

    Anchorage, Alaska

  • Datum konání akce

    24. 6. 2008

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000259736801124