Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03150851" target="_blank" >RIV/68407700:21230/08:03150851 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases
Popis výsledku v původním jazyce
The state of the art in visual object retrieval from large databases is achieved by systems that are inspired by text retrieval. A key component of these approaches is that local regions of images are characterized using high-dimensional descriptors which are then mapped to .visual words. selected from a discrete vocabulary. This paper explores techniques to map each visual region to a weighted set of words, allowing the inclusion of features which were lost in the quantization stage of previous systems. The set of visual words is obtained by selecting words based on proximity in descriptor space. We describe how this representation may be incorporated into a standard tf-idf architecture, and how spatial verification is modified in the case of this soft-assignment.
Název v anglickém jazyce
Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases
Popis výsledku anglicky
The state of the art in visual object retrieval from large databases is achieved by systems that are inspired by text retrieval. A key component of these approaches is that local regions of images are characterized using high-dimensional descriptors which are then mapped to .visual words. selected from a discrete vocabulary. This paper explores techniques to map each visual region to a weighted set of words, allowing the inclusion of features which were lost in the quantization stage of previous systems. The set of visual words is obtained by selecting words based on proximity in descriptor space. We describe how this representation may be incorporated into a standard tf-idf architecture, and how spatial verification is modified in the case of this soft-assignment.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/7E08031" target="_blank" >7E08031: Dynamic Interactive Perception-action Learning in Cognitive Systems</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CVPR 2008: Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISBN
978-1-4244-2242-5
ISSN
1063-6919
e-ISSN
—
Počet stran výsledku
1
Strana od-do
—
Název nakladatele
Omnipress
Místo vydání
Medison
Místo konání akce
Anchorage, Alaska
Datum konání akce
24. 6. 2008
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000259736801124