CoPhIR Image Collection under the Microscope
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F09%3A00029662" target="_blank" >RIV/00216224:14330/09:00029662 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CoPhIR Image Collection under the Microscope
Popis výsledku v původním jazyce
The Content-based Photo Image Retrieval (CoPhIR) dataset is the largest available database of digital images with corresponding visual descriptors. It contains five MPEG-7 global descriptors extracted from more than 106 million images from Flickr photo-sharing system. In this paper, we analyze this dataset focusing on 1) efficiency of similarity-based indexing and searching and on 2) expressiveness of combination of the descriptors with respect to subjective perception of visual similarity. We treat thedescriptors as metric spaces and then combine them into a multi-metric space. We analyze distance distributions of individual descriptors, measure intrinsic dimensionality of these datasets and statistically evaluate correlation between these descriptors. Further, we use two methods to assess subjective accuracy and satisfaction of similarity retrieval based on a combination of descriptors that is recommended for CoPhIR, and we compare these results on databases of 10 and 100 million Co
Název v anglickém jazyce
CoPhIR Image Collection under the Microscope
Popis výsledku anglicky
The Content-based Photo Image Retrieval (CoPhIR) dataset is the largest available database of digital images with corresponding visual descriptors. It contains five MPEG-7 global descriptors extracted from more than 106 million images from Flickr photo-sharing system. In this paper, we analyze this dataset focusing on 1) efficiency of similarity-based indexing and searching and on 2) expressiveness of combination of the descriptors with respect to subjective perception of visual similarity. We treat thedescriptors as metric spaces and then combine them into a multi-metric space. We analyze distance distributions of individual descriptors, measure intrinsic dimensionality of these datasets and statistically evaluate correlation between these descriptors. Further, we use two methods to assess subjective accuracy and satisfaction of similarity retrieval based on a combination of descriptors that is recommended for CoPhIR, and we compare these results on databases of 10 and 100 million Co
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F09%2F0683" target="_blank" >GA201/09/0683: Vyhledávání v rozsáhlých multimediálních databázích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2009 Second International Workshop on Similarity Search and Applications
ISBN
978-0-7695-3765-8
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
IEEE Computer Society
Místo vydání
Washington, DC, USA
Místo konání akce
Prague, Czech Republic
Datum konání akce
1. 1. 2009
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—