Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

STRONG STABILITY OF NEUTRAL EQUATIONS WITH AN ARBITRARY DELAY DEPENDENCY STRUCTURE

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00156393" target="_blank" >RIV/68407700:21230/09:00156393 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21220/09:00156393

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    STRONG STABILITY OF NEUTRAL EQUATIONS WITH AN ARBITRARY DELAY DEPENDENCY STRUCTURE

  • Popis výsledku v původním jazyce

    The stability theory for linear neutral equations subjected to delay perturbations is addressed. It is assumed that the delays cannot necessarily vary independently of each other, but depend on a possibly smaller number of independent parameters. As a main result, necessary and sufficient conditions for strong stability are derived along with bounds on the spectrum, which take into account the precise dependency structure of the delays. In the derivation of the stability theory, results from realizationtheory and determinantal representations of multivariable polynomials play an important role. The observations and results obtained in the paper are first illustrated and validated with a numerical example. Next, the effects of small feedback delays onthe stability of a boundary controlled hyperbolic partial differential equation and of a control system involving state derivative feedback are analyzed.

  • Název v anglickém jazyce

    STRONG STABILITY OF NEUTRAL EQUATIONS WITH AN ARBITRARY DELAY DEPENDENCY STRUCTURE

  • Popis výsledku anglicky

    The stability theory for linear neutral equations subjected to delay perturbations is addressed. It is assumed that the delays cannot necessarily vary independently of each other, but depend on a possibly smaller number of independent parameters. As a main result, necessary and sufficient conditions for strong stability are derived along with bounds on the spectrum, which take into account the precise dependency structure of the delays. In the derivation of the stability theory, results from realizationtheory and determinantal representations of multivariable polynomials play an important role. The observations and results obtained in the paper are first illustrated and validated with a numerical example. Next, the effects of small feedback delays onthe stability of a boundary controlled hyperbolic partial differential equation and of a control system involving state derivative feedback are analyzed.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BC - Teorie a systémy řízení

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Control and Optimization

  • ISSN

    0363-0129

  • e-ISSN

  • Svazek periodika

    48

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    24

  • Strana od-do

  • Kód UT WoS článku

    000265778500016

  • EID výsledku v databázi Scopus