Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Tracking by an Optimal Sequence of Linear Predictors

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00157040" target="_blank" >RIV/68407700:21230/09:00157040 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Tracking by an Optimal Sequence of Linear Predictors

  • Popis výsledku v původním jazyce

    We propose a learning approach to tracking explicitly minimizing the computational complexity of the tracking process subject to user-defined probability of failure (loss-of-lock) and precision. The tracker is formed by a Number of Sequences of Learned Linear Predictors (NoSLLiP). Robustness of NoSLLiP is achieved by modeling the object as a collection of local motion predictors --- object motion is estimated by the outlier-tolerant Ransac algorithm from local predictions. Efficiency of the NoSLLiP tracker stems from (i) the simplicity of the local predictors and (ii) from the fact that all design decisions - the number of local predictors used by the tracker, their computational complexity (ie the number of observations the prediction is based on), locations as well as the number of Ransac iterations are all subject to the optimization (learning) process. All time-consuming operations are performed during the learning stage - t.

  • Název v anglickém jazyce

    Tracking by an Optimal Sequence of Linear Predictors

  • Popis výsledku anglicky

    We propose a learning approach to tracking explicitly minimizing the computational complexity of the tracking process subject to user-defined probability of failure (loss-of-lock) and precision. The tracker is formed by a Number of Sequences of Learned Linear Predictors (NoSLLiP). Robustness of NoSLLiP is achieved by modeling the object as a collection of local motion predictors --- object motion is estimated by the outlier-tolerant Ransac algorithm from local predictions. Efficiency of the NoSLLiP tracker stems from (i) the simplicity of the local predictors and (ii) from the fact that all design decisions - the number of local predictors used by the tracker, their computational complexity (ie the number of observations the prediction is based on), locations as well as the number of Ransac iterations are all subject to the optimization (learning) process. All time-consuming operations are performed during the learning stage - t.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Pattern Analysis and Machine Intelligence

  • ISSN

    0162-8828

  • e-ISSN

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

  • Kód UT WoS článku

    000263396100008

  • EID výsledku v databázi Scopus