Learning Fast Emulators of Binary Decision Processes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00157776" target="_blank" >RIV/68407700:21230/09:00157776 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning Fast Emulators of Binary Decision Processes
Popis výsledku v původním jazyce
We shows how existing binary decision algorithms can be approximated by a fast trained WaldBoost classifier. WaldBoost learning minimises the decision time of the classifier while guaranteeing predefined precision. The WaldBoost algorithm together with bootstrapping is able to efficiently handle an effectively unlimited number of training examples provided by the implementation of the approximated algorithm. Two interest point detectors, the Hessian-Laplace and the Kadir-Brady saliency detectors, are emulated to demonstrate the approach. Experiments show that while the repeatability and matching scores are similar for the original and emulated algorithms, a 9-fold speed-up for the Hessian-Laplace detector and a 142-fold speed-up for the Kadir-Brady detector is achieved.
Název v anglickém jazyce
Learning Fast Emulators of Binary Decision Processes
Popis výsledku anglicky
We shows how existing binary decision algorithms can be approximated by a fast trained WaldBoost classifier. WaldBoost learning minimises the decision time of the classifier while guaranteeing predefined precision. The WaldBoost algorithm together with bootstrapping is able to efficiently handle an effectively unlimited number of training examples provided by the implementation of the approximated algorithm. Two interest point detectors, the Hessian-Laplace and the Kadir-Brady saliency detectors, are emulated to demonstrate the approach. Experiments show that while the repeatability and matching scores are similar for the original and emulated algorithms, a 9-fold speed-up for the Hessian-Laplace detector and a 142-fold speed-up for the Kadir-Brady detector is achieved.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA102%2F07%2F1317" target="_blank" >GA102/07/1317: Metody pro vizuální rozpoznávání velkých souborů elastických objektů</a><br>
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Computer Vision
ISSN
0920-5691
e-ISSN
—
Svazek periodika
83
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
000264520400003
EID výsledku v databázi Scopus
—