Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Classification of the Emotional States Based on the EEG Signal Processing

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00159618" target="_blank" >RIV/68407700:21230/09:00159618 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Classification of the Emotional States Based on the EEG Signal Processing

  • Popis výsledku v původním jazyce

    The paper proposes a method for the classification of EEG signal based on machine learning methods. We analyzed the data from an EEG experiment consisting of affective picture stimuli presentation, and tested automatic recognition of the individual emotional states from the EEG signal using Bayes classifier. The mean accuracy was about 75 percent, but we were not able to select universal features for classification of all subjects, because of interindividual differences in the signal. We also identifiedcorrelation between the classification error and the extroversion-introversion personality trait measured by EPQ-R test. Introverts have lower excitation threshold so we are able to detect the differences in their EEG activity with better accuracy. Furthermore, the use of Kohonen's self-organizing map for visualization is suggested and demonstrated on one subject.

  • Název v anglickém jazyce

    Classification of the Emotional States Based on the EEG Signal Processing

  • Popis výsledku anglicky

    The paper proposes a method for the classification of EEG signal based on machine learning methods. We analyzed the data from an EEG experiment consisting of affective picture stimuli presentation, and tested automatic recognition of the individual emotional states from the EEG signal using Bayes classifier. The mean accuracy was about 75 percent, but we were not able to select universal features for classification of all subjects, because of interindividual differences in the signal. We also identifiedcorrelation between the classification error and the extroversion-introversion personality trait measured by EPQ-R test. Introverts have lower excitation threshold so we are able to detect the differences in their EEG activity with better accuracy. Furthermore, the use of Kohonen's self-organizing map for visualization is suggested and demonstrated on one subject.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of 9th Intrenational Conference on Information Technology and Applications in Biomedicine

  • ISBN

    978-1-4244-5378-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Larnaca

  • Datum konání akce

    5. 11. 2009

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku