Testing of Inductive Preprocessing Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00159932" target="_blank" >RIV/68407700:21230/09:00159932 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/09:00159932
Výsledek na webu
<a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.215.1155&rep=rep1&type=pdf" target="_blank" >http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.215.1155&rep=rep1&type=pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Testing of Inductive Preprocessing Algorithm
Popis výsledku v původním jazyce
The data preprocessing is very important part of the knowledge discovery process. Data mining systems contains tens of preprocessing methods (for example methods for missing data imputation, data reduction, discretization, data enrichment, etc...) and usually it is not clear which methods to use. The selection of preprocessing methods appropriate for particular dataset needs strong experience and a lot of experimenting. In this paper we will test our extension of inductive approach to data preprocessing. We developed inductive preprocessing method which utilizes genetic algorithm to compose from scratch a sequence of preprocessing methods which fits to the data and allows successful model to be created. To test our automatic preprocessing utilize several real-world datasets available from UCI Machine learning repository.
Název v anglickém jazyce
Testing of Inductive Preprocessing Algorithm
Popis výsledku anglicky
The data preprocessing is very important part of the knowledge discovery process. Data mining systems contains tens of preprocessing methods (for example methods for missing data imputation, data reduction, discretization, data enrichment, etc...) and usually it is not clear which methods to use. The selection of preprocessing methods appropriate for particular dataset needs strong experience and a lot of experimenting. In this paper we will test our extension of inductive approach to data preprocessing. We developed inductive preprocessing method which utilizes genetic algorithm to compose from scratch a sequence of preprocessing methods which fits to the data and allows successful model to be created. To test our automatic preprocessing utilize several real-world datasets available from UCI Machine learning repository.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/KJB201210701" target="_blank" >KJB201210701: Automatická extrakce znalostí</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů