Model Fitting using RANSAC for Surgical Tool Localization in 3D Ultrasound Images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00162857" target="_blank" >RIV/68407700:21230/09:00162857 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Model Fitting using RANSAC for Surgical Tool Localization in 3D Ultrasound Images
Popis výsledku v původním jazyce
Ultrasound guidance is used for many surgical interventions like biopsy or electrode insertion. We present a method for localization of a thin surgical tool such as a biopsy needle or a micro-electrode in a three dimensional (3D) ultrasound image. The proposed method starts with thresholding and model fitting using RANSAC for robust localization of the axis. Subsequent local optimization refines its position. Finally, the tip of the tool is localized by finding an intensity drop along the axis. Two different tool models are presented, one simple and fast, the second using a learnt a priori information about voxel intensities of the tool and the background. The simulation study shows that our algorithm can localize the tool at almost real time speed even using a Matlab implementation, with accuracy better than 1 mm. In experimental comparison to several alternative localization methods our method appears to be the fastest and the most robust one. We also show results on real 3D ultrasou
Název v anglickém jazyce
Model Fitting using RANSAC for Surgical Tool Localization in 3D Ultrasound Images
Popis výsledku anglicky
Ultrasound guidance is used for many surgical interventions like biopsy or electrode insertion. We present a method for localization of a thin surgical tool such as a biopsy needle or a micro-electrode in a three dimensional (3D) ultrasound image. The proposed method starts with thresholding and model fitting using RANSAC for robust localization of the axis. Subsequent local optimization refines its position. Finally, the tip of the tool is localized by finding an intensity drop along the axis. Two different tool models are presented, one simple and fast, the second using a learnt a priori information about voxel intensities of the tool and the background. The simulation study shows that our algorithm can localize the tool at almost real time speed even using a Matlab implementation, with accuracy better than 1 mm. In experimental comparison to several alternative localization methods our method appears to be the fastest and the most robust one. We also show results on real 3D ultrasou
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů