Není k dispozici
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F05%3A03117043" target="_blank" >RIV/68407700:21230/05:03117043 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Localizing Metal Electrode from 3D Ultrasound Data Using RANSAC and Intensity Priors
Popis výsledku v původním jazyce
In surgical interventions, miniature metallic tools such as thin electrodes and needles are introduced in tissue. Tracking systems are used to estimate their precise position. In this paper we describe an algorithm that exploits a three-dimensional ultrasound image and raw radio-frequency (RF) signal to determine the position of a thin, metallic electrode in biological tissue. We assume that electrode appears in 3D ultrasound image as a bright, elongated region. To estimate its position, a mathematicalmodel of the region was established. It approximates the electrode axis with a polynomial curve. The voxel intensity distribution near the ray axis was determined from acquired RF signals. The model parameters are estimated by the RANSAC estimator. Finally, the electrode endpoints are located. The method was tested on real ultrasound data of a phantom with a thin tungsten electrode inserted. The results of experiments show that the method is stable even if the data are very noisy.
Název v anglickém jazyce
Localizing Metal Electrode from 3D Ultrasound Data Using RANSAC and Intensity Priors
Popis výsledku anglicky
In surgical interventions, miniature metallic tools such as thin electrodes and needles are introduced in tissue. Tracking systems are used to estimate their precise position. In this paper we describe an algorithm that exploits a three-dimensional ultrasound image and raw radio-frequency (RF) signal to determine the position of a thin, metallic electrode in biological tissue. We assume that electrode appears in 3D ultrasound image as a bright, elongated region. To estimate its position, a mathematicalmodel of the region was established. It approximates the electrode axis with a polynomial curve. The voxel intensity distribution near the ray axis was determined from acquired RF signals. The model parameters are estimated by the RANSAC estimator. Finally, the electrode endpoints are located. The method was tested on real ultrasound data of a phantom with a thin tungsten electrode inserted. The results of experiments show that the method is stable even if the data are very noisy.
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1ET101050403" target="_blank" >1ET101050403: Metody umělé inteligence v diagnostice z medicínských obrazů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2005
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
Praha
Název nakladatele resp. objednatele
—
Verze
—
Identifikační číslo nosiče
neuvedeno