Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Rotation invariant image description with local binary pattern histogram fourier features.

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00163113" target="_blank" >RIV/68407700:21230/09:00163113 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Rotation invariant image description with local binary pattern histogram fourier features.

  • Popis výsledku v původním jazyce

    In this paper, we propose Local Binary Pattern Histogram Fourier features (LBP-HF), a novel rotation invariant image descriptor computed from discrete Fourier transforms of local binary pattern (LBP) histograms. Unlike most other histogram based invariant texture descriptors which normalize rotation locally, the proposed invariants are constructed globally for the whole region to be described. In addition to being rotation invariant, the LBP-HF features retain the highly discrim- inative nature of LBP histograms. In the experiments, it is shown that these features outperform non-invariant and earlier version of rotation invariant LBP and the MR8 descriptor in texture classification, material categorization and face recognition tests.

  • Název v anglickém jazyce

    Rotation invariant image description with local binary pattern histogram fourier features.

  • Popis výsledku anglicky

    In this paper, we propose Local Binary Pattern Histogram Fourier features (LBP-HF), a novel rotation invariant image descriptor computed from discrete Fourier transforms of local binary pattern (LBP) histograms. Unlike most other histogram based invariant texture descriptors which normalize rotation locally, the proposed invariants are constructed globally for the whole region to be described. In addition to being rotation invariant, the LBP-HF features retain the highly discrim- inative nature of LBP histograms. In the experiments, it is shown that these features outperform non-invariant and earlier version of rotation invariant LBP and the MR8 descriptor in texture classification, material categorization and face recognition tests.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/7E08031" target="_blank" >7E08031: Dynamic Interactive Perception-action Learning in Cognitive Systems</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    SCIA 2009: Proceedings of the 16th Scandinavian Conference on Image Analysis

  • ISBN

    978-3-642-02229-6

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

  • Název nakladatele

    Springer

  • Místo vydání

    Berlin

  • Místo konání akce

    Oslo

  • Datum konání akce

    15. 6. 2009

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000268661000007