Texture-Based Leaf Identification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00218862" target="_blank" >RIV/68407700:21230/14:00218862 - isvavai.cz</a>
Výsledek na webu
<a href="http://cmp.felk.cvut.cz/~sulcmila/papers/Sulc-TR-2014-10.pdf" target="_blank" >http://cmp.felk.cvut.cz/~sulcmila/papers/Sulc-TR-2014-10.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Texture-Based Leaf Identification
Popis výsledku v původním jazyce
A novel approach to visual leaf identification is proposed. A leaf is represented by a pair of local feature histograms, one computed from the leaf interior, the other from the border. The histogrammed local features are an improved version of a recentlyproposed rotation and scale invariant descriptor based on local binary patterns (LBPs). Describing the leaf with multi-scale histograms of rotationally invariant features derived from sign- and magnitude-LBP provides a desirable level of invariance. Therepresentation does not use colour. Using the same parameter settings in all experiments and standard evaluation protocols, the method outperforms the state-of-the-art on all tested leaf sets - the Austrian Federal Forests d ataset, the Flavia dataset,the Foliage dataset, the Swedish dataset and the Midd le European Woods dataset - achieving excellent recognition rates above 99% . Preliminary results on images from the jnorth and south regions of Franc e obtained from the LifeCLEF'14 P
Název v anglickém jazyce
Texture-Based Leaf Identification
Popis výsledku anglicky
A novel approach to visual leaf identification is proposed. A leaf is represented by a pair of local feature histograms, one computed from the leaf interior, the other from the border. The histogrammed local features are an improved version of a recentlyproposed rotation and scale invariant descriptor based on local binary patterns (LBPs). Describing the leaf with multi-scale histograms of rotationally invariant features derived from sign- and magnitude-LBP provides a desirable level of invariance. Therepresentation does not use colour. Using the same parameter settings in all experiments and standard evaluation protocols, the method outperforms the state-of-the-art on all tested leaf sets - the Austrian Federal Forests d ataset, the Flavia dataset,the Foliage dataset, the Swedish dataset and the Midd le European Woods dataset - achieving excellent recognition rates above 99% . Preliminary results on images from the jnorth and south regions of Franc e obtained from the LifeCLEF'14 P
Klasifikace
Druh
V<sub>souhrn</sub> - Souhrnná výzkumná zpráva
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Počet stran výsledku
20
Místo vydání
Praha
Název nakladatele resp. objednatele
Center for Machine Perception, K13133 FEE Czech Technical University
Verze
—