Geometric min-Hashing: Finding a (thick) needle in a haystack
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00163136" target="_blank" >RIV/68407700:21230/09:00163136 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Geometric min-Hashing: Finding a (thick) needle in a haystack
Popis výsledku v původním jazyce
We propose a novel hashing scheme for image retrieval, clustering and automatic object discovery. Unlike commonly used bag-of-words approaches, the spatial extent of image features is exploited in our method. The geometric information is used both to construct repeatable hash keys and to increase the discriminability of the description. Each hash key combines visual appearance (visual words) with semi-local geometric information. Compared with the state-of-the-art min-hash, the proposed method has bothhigher recall (probability of collision for hashes on the same object) and lower false positive rates (random collisions). The advantages of geometric min-hashing approach are most pronounced in the presence of viewpoint and scale change, significant occlusion or small physical overlap of the viewing fields. We demonstrate the power of the proposed method on small object discovery in a large unordered collection of images and on a large scale image clustering problem.
Název v anglickém jazyce
Geometric min-Hashing: Finding a (thick) needle in a haystack
Popis výsledku anglicky
We propose a novel hashing scheme for image retrieval, clustering and automatic object discovery. Unlike commonly used bag-of-words approaches, the spatial extent of image features is exploited in our method. The geometric information is used both to construct repeatable hash keys and to increase the discriminability of the description. Each hash key combines visual appearance (visual words) with semi-local geometric information. Compared with the state-of-the-art min-hash, the proposed method has bothhigher recall (probability of collision for hashes on the same object) and lower false positive rates (random collisions). The advantages of geometric min-hashing approach are most pronounced in the presence of viewpoint and scale change, significant occlusion or small physical overlap of the viewing fields. We demonstrate the power of the proposed method on small object discovery in a large unordered collection of images and on a large scale image clustering problem.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CVPR 2009: Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISBN
978-1-4244-3991-1
ISSN
1063-6919
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
Omnipress
Místo vydání
Madison
Místo konání akce
Fontainebleau Resort, Miami Beach, Florida
Datum konání akce
20. 6. 2009
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—