Comparison of Several Classifiers to Evaluate Endocardial Electrograms Fractionation in Human
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00189630" target="_blank" >RIV/68407700:21230/09:00189630 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/09:00189630
Výsledek na webu
<a href="http://dx.doi.org/10.1109/IEMBS.2009.5335161" target="_blank" >http://dx.doi.org/10.1109/IEMBS.2009.5335161</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IEMBS.2009.5335161" target="_blank" >10.1109/IEMBS.2009.5335161</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of Several Classifiers to Evaluate Endocardial Electrograms Fractionation in Human
Popis výsledku v původním jazyce
Complex fractionated atrial electrograms (CFAEs) may represent the electrophysiological substrate for atrial fibrillation (AF). Progress in signal processing algorithms to identify CFAEs sites is crucial for the development of AF ablation strategies. A novel algorithm for automated description of atrial electrograms (A-EGMs) fractionation based on wavelet transform and several statistical pattern recognition methods was proposed and new methodology of A-EGM processing was designed and tested. The algorithms for A-EGM classification were developed using normal density based classifiers, linear and high degree polynomial classifiers, nearest mean scaled classifiers, nonlinear classifiers, neural networks and j48. All classifiers were compared and testedusing a representative set of 1.5 s A-EGMs (n = 68) ranked by 3 independent experts 100% coincidentialy into 4 classes of fractionation: 1 - organized atrial activity; 2 - mild; 3 - intermediate; 4 - high degree of fractionation. Feature
Název v anglickém jazyce
Comparison of Several Classifiers to Evaluate Endocardial Electrograms Fractionation in Human
Popis výsledku anglicky
Complex fractionated atrial electrograms (CFAEs) may represent the electrophysiological substrate for atrial fibrillation (AF). Progress in signal processing algorithms to identify CFAEs sites is crucial for the development of AF ablation strategies. A novel algorithm for automated description of atrial electrograms (A-EGMs) fractionation based on wavelet transform and several statistical pattern recognition methods was proposed and new methodology of A-EGM processing was designed and tested. The algorithms for A-EGM classification were developed using normal density based classifiers, linear and high degree polynomial classifiers, nearest mean scaled classifiers, nonlinear classifiers, neural networks and j48. All classifiers were compared and testedusing a representative set of 1.5 s A-EGMs (n = 68) ranked by 3 independent experts 100% coincidentialy into 4 classes of fractionation: 1 - organized atrial activity; 2 - mild; 3 - intermediate; 4 - high degree of fractionation. Feature
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
ISBN
978-1-4244-3295-0
ISSN
1557-170X
e-ISSN
—
Počet stran výsledku
4
Strana od-do
2502-2505
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Minneapolis
Datum konání akce
2. 9. 2009
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000280543601363