Detecting rigid convexity of bivariate polynomials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F10%3A00160536" target="_blank" >RIV/68407700:21230/10:00160536 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detecting rigid convexity of bivariate polynomials
Popis výsledku v původním jazyce
Given a polynomial x in Rn -> p(x) in n = 2 variables, a symbolicnumerical algorithm is first described for detecting whether the connected component of the plane sublevel set P = {x : p(x) 0} containing the origin is rigidly convex, or equivalently, whether it has a linear matrix inequality (LMI) representation, or equivalently, if polynomial p(x) is hyperbolic with respect to the origin. The problem boils down to checking whether a univariate polynomial matrix is positive semidefinite, an optimizationproblem that can be solved with eigenvalue decomposition. When the variety C = {x : p(x) = 0} is an algebraic curve of genus zero, a second algorithm based on Be´ zoutians is proposed to detect whether P has an LMI representation and to build such a representation from a rational parametrization of C. Finally, some extensions to positive genus curves and to the case n > 2 are mentioned.
Název v anglickém jazyce
Detecting rigid convexity of bivariate polynomials
Popis výsledku anglicky
Given a polynomial x in Rn -> p(x) in n = 2 variables, a symbolicnumerical algorithm is first described for detecting whether the connected component of the plane sublevel set P = {x : p(x) 0} containing the origin is rigidly convex, or equivalently, whether it has a linear matrix inequality (LMI) representation, or equivalently, if polynomial p(x) is hyperbolic with respect to the origin. The problem boils down to checking whether a univariate polynomial matrix is positive semidefinite, an optimizationproblem that can be solved with eigenvalue decomposition. When the variety C = {x : p(x) = 0} is an algebraic curve of genus zero, a second algorithm based on Be´ zoutians is proposed to detect whether P has an LMI representation and to build such a representation from a rational parametrization of C. Finally, some extensions to positive genus curves and to the case n > 2 are mentioned.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA102%2F08%2F0186" target="_blank" >GA102/08/0186: Algoritmy pro analýzu a návrh řízení složitých systémů</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Linear Algebra and Its Applications
ISSN
0024-3795
e-ISSN
—
Svazek periodika
432
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
000274460300009
EID výsledku v databázi Scopus
—