A family of orthogonal polynomials corresponding to Jacobi matrices with a trace class inverse
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00365621" target="_blank" >RIV/68407700:21340/22:00365621 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jat.2022.105769" target="_blank" >https://doi.org/10.1016/j.jat.2022.105769</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jat.2022.105769" target="_blank" >10.1016/j.jat.2022.105769</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A family of orthogonal polynomials corresponding to Jacobi matrices with a trace class inverse
Popis výsledku v původním jazyce
Assume that {an; n > 0} is a sequence of positive numbers and n-ary sumation a -1 fin = an + k2an-1 where k is an element of (0, 1) is a parameter, and let {Pn(x)} be an orthonormal polynomial sequence defined by the three-term recurrence alpha 0P1(x) + (fi 0 -x)P0(x) =0, alpha n Pn+1(x) + (fin - x)Pn(x) + alpha n-1Pn-1(x) =0 for n > 1, with P0(x) = 1. Let J be the corresponding Jacobi (tridiagonal) matrix, i.e. Jn,n = fin, Jn,n+1 = Jn+1,n = alpha n for n > 0. Then J-1 exists and belongs to the trace class. We derive an explicit formula for Pn(x) as well as for the characteristic function of J and describe the orthogonality measure for the polynomial sequence. As a particular case, the modified q-Laguerre polynomials are introduced and studied. (c) 2022 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
A family of orthogonal polynomials corresponding to Jacobi matrices with a trace class inverse
Popis výsledku anglicky
Assume that {an; n > 0} is a sequence of positive numbers and n-ary sumation a -1 fin = an + k2an-1 where k is an element of (0, 1) is a parameter, and let {Pn(x)} be an orthonormal polynomial sequence defined by the three-term recurrence alpha 0P1(x) + (fi 0 -x)P0(x) =0, alpha n Pn+1(x) + (fin - x)Pn(x) + alpha n-1Pn-1(x) =0 for n > 1, with P0(x) = 1. Let J be the corresponding Jacobi (tridiagonal) matrix, i.e. Jn,n = fin, Jn,n+1 = Jn+1,n = alpha n for n > 0. Then J-1 exists and belongs to the trace class. We derive an explicit formula for Pn(x) as well as for the characteristic function of J and describe the orthogonality measure for the polynomial sequence. As a particular case, the modified q-Laguerre polynomials are introduced and studied. (c) 2022 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Centrum pokročilých aplikovaných přírodních věd</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Approximation Theory
ISSN
0021-9045
e-ISSN
1096-0430
Svazek periodika
279
Číslo periodika v rámci svazku
105769
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
22
Strana od-do
—
Kód UT WoS článku
000797901300003
EID výsledku v databázi Scopus
2-s2.0-85129039696