The SHOGUN Machine Learning Toolbox
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F10%3A00168839" target="_blank" >RIV/68407700:21230/10:00168839 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The SHOGUN Machine Learning Toolbox
Popis výsledku v původním jazyce
We have developed a machine learning toolbox, called SHOGUN, which is designed for unified large-scale learning for a broad range of feature types and learning settings. It offers a considerable number of machine learning models such as support vector machines, hidden Markov models, multiple kernel learning, linear discriminant analysis, and more. Most of the specific algorithms are able to deal with several different data classes. We have used this toolbox in several applications from computational biology, some of them coming with no less than 50 million training examples and others with 7 billion test examples. With more than a thousand installations worldwide, SHOGUN is already widely adopted in the machine learning community and beyond. SHOGUN isimplemented in C++ and interfaces to MATLABTM, R, Octave, Python, and has a stand-alone command line interface. The source code is freely available under the GNU General Public License, Version 3 at http://www.shogun-toolbox.org.
Název v anglickém jazyce
The SHOGUN Machine Learning Toolbox
Popis výsledku anglicky
We have developed a machine learning toolbox, called SHOGUN, which is designed for unified large-scale learning for a broad range of feature types and learning settings. It offers a considerable number of machine learning models such as support vector machines, hidden Markov models, multiple kernel learning, linear discriminant analysis, and more. Most of the specific algorithms are able to deal with several different data classes. We have used this toolbox in several applications from computational biology, some of them coming with no less than 50 million training examples and others with 7 billion test examples. With more than a thousand installations worldwide, SHOGUN is already widely adopted in the machine learning community and beyond. SHOGUN isimplemented in C++ and interfaces to MATLABTM, R, Octave, Python, and has a stand-alone command line interface. The source code is freely available under the GNU General Public License, Version 3 at http://www.shogun-toolbox.org.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Machine Learning Research
ISSN
1532-4435
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
4
Strana od-do
—
Kód UT WoS článku
000282522400001
EID výsledku v databázi Scopus
—