Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Distributed stabilization of spatially invariant systems: positive polynomial approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F10%3A00171897" target="_blank" >RIV/68407700:21230/10:00171897 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985556:_____/10:00347862

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Distributed stabilization of spatially invariant systems: positive polynomial approach

  • Popis výsledku v původním jazyce

    The paper gives a computationally feasible characterisation of spatially distributed discrete-time controllers stabilising a spatially invariant system. This gives a building block for convex optimisation based control design for these systems. Mathematically, such systems are described by partial differential equations with coefficients independent on time and location. In this paper, a situation with one spatial and one temporal variable is considered. Models of such systems can take a form of a 2-D transfer function. Stabilising distributed feedback controllers are then parametrised as a solution to the Diophantine equation ax + by = c for a given stable bivariate polynomial c. This paper brings a computational characterisation of all such stable 2-D polynomials exploiting the relationship between a stability of a 2-D polynomial and positiveness of a related polynomial matrix on the unit circle. Such matrices are usually bilinear in the coefficients of the original polynomials.

  • Název v anglickém jazyce

    Distributed stabilization of spatially invariant systems: positive polynomial approach

  • Popis výsledku anglicky

    The paper gives a computationally feasible characterisation of spatially distributed discrete-time controllers stabilising a spatially invariant system. This gives a building block for convex optimisation based control design for these systems. Mathematically, such systems are described by partial differential equations with coefficients independent on time and location. In this paper, a situation with one spatial and one temporal variable is considered. Models of such systems can take a form of a 2-D transfer function. Stabilising distributed feedback controllers are then parametrised as a solution to the Diophantine equation ax + by = c for a given stable bivariate polynomial c. This paper brings a computational characterisation of all such stable 2-D polynomials exploiting the relationship between a stability of a 2-D polynomial and positiveness of a related polynomial matrix on the unit circle. Such matrices are usually bilinear in the coefficients of the original polynomials.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BC - Teorie a systémy řízení

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1M0567" target="_blank" >1M0567: Centrum aplikované kybernetiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems - MTNS 2010

  • ISBN

    978-963-311-370-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

  • Název nakladatele

    MTA SZTAKI - Hungarian Academy of Sciences

  • Místo vydání

    Budapest

  • Místo konání akce

    Budapešť

  • Datum konání akce

    5. 7. 2010

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku